Двухконтурный турбореактивный двигатель ТРДД и ТРДДФ

Виды газотурбинных двигателей

Конструктивно газотурбинные силовые установки делят на четыре типа

Турбореактивные установки.

Двигатель этого типа используют в авиационной промышленности, когда важен показатель скорости передвижения (например, военные самолёты). Работа происходит за счет выхода газов из сопла самолёта на повышенной скорости. Газы толкают транспорт и таким образом двигают изделие вперёд.

Турбовинтовая установка.

Конструктивным отличием с предшественником считается дополнительная турбинная секция. Устройство вращает винт, забирая энергию у газов, прошедших компрессорную турбину. Визуально, механизм представлен рядом лопаток, размещают деталь в передней или задней части. Для отвода выхлопа применяют отводящие патрубки. Аппарат предназначен для установки на летательных аппаратах, используемых на малых высотах и скоростях, может оснащаться биротативным воздушным винтом.

Турбовентиляторный двигатель «Д-27»:

Турбовентиляторная установка.

Конструктивно, турбина похожа на предыдущую установку, различие во второй турбинной секции. Элемент отнимает энергию газов частично, как следствие, используются отводные выхлопные патрубки. Особенность агрегата, вентилятор активируется турбиной пониженного напора. По этой причине, второе название двигателя – «двухконтурный». Здесь внутренний контур образован воздушным потоком, идущим через агрегат, внешний контур создаёт направление, чтобы повысить эффект толчка вперёд. Последние выпуски летательных аппаратов применяют турбовентиляторные двигатели, поскольку механизмы надёжны и экономичны на больших высотах.

Турбовальная установка.

Конструктивно, установка похожа на предыдущий агрегат. Разница в том, что вал механизма приводит в действие многочисленные возможные элементы. Мотор получил распространение на вертолётах, танках, кораблях. Например, М90ФР, корабельный газотурбинный двигатель, устанавливаемый на фрегатах Российского флота. К таковым относятся: «Адмирал Горшков», «Дерзкий» и др.

Газотурбинный »:

Вспомогательный двигатель

Случается, что газотурбинная силовая установка применяется, как вспомогательное оборудование, например, автономный источник питания на борту. Простые агрегаты сжимают воздушные массы, отбираемые у турбинного компрессора, который запускает главные двигатели. Сложные установки вырабатывают электрическую энергию для нужд бортовой сети.

История создания первого авто с турбиной

Трудно себе представить, но начало исследований в области создания газотурбинного двигателя датируется далеким 1948 годом. Именно тогда компания Fiat задалась целью создать принципиально новый движок, способный разогнать автомобиль до рекордных по тем временам 250 км/час.

Спустя шесть лет, а именно в 1954 году на Туринском автосалоне и была представлена первая модель такого авто & Fiat Turbina. Мощность его двигателя составляла 300 лошадиных сил при 22000 об/мин. При этом конструкция кузова имела самый низкий коэффициент аэродинамического сопротивления, который являлся рекордным на протяжении 30 лет.

Как ни прискорбно, но газотурбинный Fiat Turbina не нашел своих поклонников среди любителей быстрой езды. Автомобиль был признан нерентабельным и бесперспективным и отправлен в заводской музей компании Fiat в Турине, где находится и по сегодняшний день. Так весьма интересный прототип альтернативного двигателя, раскритикованный за большой расход топлива и постоянный перегрев, стал достоянием любопытных и праздных туристов.

Современные разработки и преимущества конструкции авто с таким движком

Автомобиль с газотурбинным двигателем в современном понимании  это гигант большой грузоподъемности или современный автопоезд. Именно для таких агрегатов необходимы мощные, легкие и простые в конструкции установки турбинного типа.

Основным отличием газотурбинного механизма от двигателя внутреннего сгорания является отсутствие возвратно поступательных движущихся деталей, которые подвержены сильному истиранию и износу. Такое отличие позволяет свести к минимуму процесс трения, он присутствует лишь в редукторе и при движении валов. Эта конструкция существенно снижает расход масла, а заодно и вес двигателя.

Ведь теперь нет необходимости в сложной системе подачи масла и омыванию им трущихся деталей мотора.

Следующей отличительной чертой такого движка будут его высокие пусковые качества. Даже маломощный стартер способен обеспечить его пуск при любых температурных показателях. Такое свойство жизненно & необходимо в арктических условиях.

К тому же малая токсичность отработанных газов газотурбинного мотора позволяет агрегату, оснащенному им, проводить работы в узком карьере на любой глубине даже при недостаточной вентиляции.

И это далеко не все преимущества таких моторов.

Почему же не внедряют такие двигатели в массовое производство?

При всей своей простоте и мощности газотурбинный двигатель имеет и ряд недостатков:

  • большой расход топлива;
  • высокие требования к чистоте всасываемого воздуха;
  • большое потребление воздуха;
  • резкое ухудшение экономичности при частичных нагрузках;
  • отсутствие возможности торможения авто двигателем.

Поэтому почти идеальный автомобиль с газотурбинным двигателем в серийное производство пока запускать не будут. 

Применение

В связи с уменьшением эффективности воздушного винта при увеличении скорости полёта, турбовинтовые двигатели в основном распространены на относительно малоскоростных летательных аппаратах, таких как самолёты местных авиалиний и транспортные самолёты.
Исключение составляет стратегический бомбардировщик Ту-95 и самолеты, созданные на его базе (Ту-114, Ту-126, Ту-142), летающие со скоростью порядка 800 км/ч.

Если учесть, что турбовинтовой двигатель работает только на дозвуковых скоростях, а турбореактивные двигатели лучше использовать для получения очень больших скоростей полёта, то можно сделать вывод, что в некотором диапазоне скоростей комбинирование этих двух двигателей является оптимальным решением (турбовентиляторный двигатель).

Ввиду того, что как лопасти вентилятора, так и лопасти винта для эффективного функционирования должны работать на дозвуковых скоростях, вентилятор в кольцевом обтекателе (который понижает скорость набегающего потока) является более эффективным на больших скоростях.

Экономическая целесообразность

Поскольку турбовинтовые двигатели на малых скоростях полёта гораздо экономичнее, чем турбореактивные двигатели, то турбовинтовые самолёты имеют преимущество перед реактивными, прежде всего, из-за низкого расхода топлива. Поэтому в период высоких цен на нефть объём продаж турбовинтовых лайнеров растёт. Так, в 2011 году, когда стоимость нефти была в районе 100 долларов за баррель, в консалтинговом агентстве Ascend Flightglobal Consultancy просчитали, что перевозчикам необходимо задуматься о переходе на турбовинтовые самолёты, поскольку высокая стоимость авиабилетов, связанная с эксплуатацией реактивных лайнеров, отпугивает потенциальных пассажиров.

При этом преимущество турбовинтовых самолётов по сравнению с реактивными на региональных перевозках очевидно. По словам руководства компании Bombardier, лайнеры Q400 (как и соответствующий ему российский Ил-114-300), в сравнении с 70-местным реактивным самолётом эффективнее на 30 % в плане экономии топлива и затрат на эксплуатацию. Соответственно, турбовинтовые самолёты являются идеальной заменой 50-местных реактивных лайнеров. В этом случае авиакомпании смогут увеличить вместимость своих воздушных судов, сохранив затраты на прежнем уровне.

Основные узлы ТВаД

Рис. 1. Схема турбовального ГТД:

  • 1- входное устройство; 2- компрессор; 3- камера сгорания; 4- турбина компрессора; 5- турбина винта (свободная турбина); 6- выходное устройство;
  • 7 — вал отбора мощности

На примере ТВаД рассмотрим характерные сечения газотурбинного двигателя:

«Н» сечение невозмущенного потока, в этом сечении параметры воздуха соответствуют атмосферным;

«Вх» сечение на входе во входное устройство двигателя;

«В» сечение на входе в компрессор двигателя;

«К» сечение на выходе из компрессора двигателя, вход в камеру сгорания;

«Г» сечение на выходе камеры сгорания двигателя, вход в турбину;

«ТК» сечение на выходе из турбины компрессора (перед свободной турбиной);

«Т» сечение на выходе из турбин двигателя, вход в выходное устройство;

«С» сечение на выходе из двигателя.

Буквы, обозначающие сечения двигателя, используются в качестве индекса при обозначении величин, характеризующих параметры газа. Например, СС — скорость истечения газа на выходе из двигателя, РК — давление газа за компрессором двигателя и.т. д.

Входное устройство.

Входное устройство предназначено для подвода к двигателю необходимого количества воздуха из атмосферы с минимальными гидравлическими потерями. Конструктивно выполнено как сужающийся канал, являющийся составной частью капотов. При движении воздуха во входном устройстве, как в любом сужающемся канале, происходит увеличение скорости, падение давления , снижение температуры .

Компрессор.

Компрессор предназначен для повышения давления воздуха. Компрессор конструктивно выполнен как лопаточная машина с вращающемся ротором. В компрессоре происходит повышение энергии воздуха за счет подводимой к его ротору механической энергии. Скорость потока в компрессоре несколько снижается. В компрессоре реализуется термодинамический процесс, приближенный к адиабатному. У вертолетных ТВаД обычно применяется осевой компрессор, т.е. воздух в компрессоре движется вдоль оси двигателя.

Камера сгорания.

Камера сгорания предназначена для подвода к воздуху тепла, в результате в камере сгорания происходит значительный рост температуры. При этом профиль проточной части камеры сгорания выбран таким, чтобы по мере продвижения газа происходило некоторое увеличение его скорости и снижение его давления. Термодинамический процесс в камере сгорания близок к изобарическому.

Турбина компрессора.

Турбина компрессора предназначена для привода во вращение ротора компрессора. Конструктивно выполнена как лопаточная машина, ротор которой с помощью вала связан с ротором компрессора и вращается заодно с ним. В турбине внутренняя энергия газа преобразуется в механическую т.е. и за счет этого вырабатывается механическая энергия, передаваемая через вал к ротору компрессора и расходуемая на его вращение.

Часть двигателя, включающая в себя компрессор, камеру сгорания, турбину компрессора, называется турбокомпрессором или газогенератором.

Свободная турбина.

Свободная турбина предназначена для выработки мощности, необходимой для передачи к главному редуктору вертолета. Процессы, происходящие в свободной турбине аналогичны тем, которые происходят в турбине компрессора.

Выходное устройство.

Выходное устройство двигателя (не регулируемое) представляет собой расширяющийся патрубок, обеспечивающий отвод отработанных газов в сторону от двигателя. В выходном устройстве двигателя ТВ2-117 газ, выходящий и свободной турбины активно смешивается с охлаждающим воздухом. В результате давление, температура и скорость газа снижаются.

Газотурбинный двигатель малой тяги серии МкА микроавиационный.

Газотурбинный двигатель малой тяги серии МкА (микроавиационный) отличается конструктивом, материалами, характеристиками, а также заранее продуманной интеграцией в ряд изделий. Это позволило повысить топливную эффективность двигателя на 82%, ресурс двигателя на 50 %, мощность на 30 %, надежность на 91%.

Описание:

Газотурбинный двигатель малой тяги серии МкА (микроавиационный) отличается конструктивом, материалами, характеристиками, а также заранее продуманной интеграцией в ряд изделий.

Основой двигателя является единый модуль, содержащий в себе:

– гибридный компрессор, обеспечивающий необходимый коэффициент сжатия и напора газа на выходе из модуля,

– блок торроидальной нессиметричной камеры сгорания с шариковой испарительной системой,

– одноступенчатую турбину с пассивным охлаждением лопаток.

 

В конструкции газотурбинного двигателя малой тяги применены новые методы балансировки подвижных элементов двигателя, позволившие снизить нагрузку на подшипниковые узлы и увеличить ресурс их работы на 20%, и новые методы синтеза системы управления, которые позволили значительно снизить расход топлива.

Газотурбинный двигатель малой тяги производится с применением аддитивных технологий производства и нанонапылений, пероуглеродосодержащих и композиционных материалов.

В двигателе используются многоканальная система смазки внутренних узлов, инновационная система воздушных тепловых экранов и интеллектуальная система самодиагностики.

В двигателе применена система управления с распределенной логикой, способная подстраиваться под параметры внешней среды, текущие условия, режимы эксплуатации двигателя и оптимизировать его параметры для достижения максимальной мощности, сберегая при этом ресурс внутренних узлов и агрегатов.

Внедрение подобных технологий позволило повысить топливную эффективность на 82%, ресурс двигателя на 50 %, мощность на 30 %, надежность на 91%.

– компактность,

– высокие характеристики надежности, мощности и потребления топлива,

– малый вес.

Технические характеристики газотурбинного двигателя малой тяги:

Характеристики: Значение:
Вес, г 2060
Длина, мм 324
Диаметр основной, мм 115
Ширина с пилонами, мм 128
Тяга максимальная, Ньютон (кВт) 200 (12)
Тяга рабочая, Ньютон 160
Расход топлива (на макс. тяге), мл/мин 460
Используемое топливо керосин/дизельное топливо
Максимальные скорость вращения, об/мин 120 000

Применение:

– малая авиация,

– локальная энергетика.

Примечание: описание технологии на примере газотурбинного двигателя малой тяги серии МкА (микроавиационный).

карта сайта

авиационный газотурбинный вспомогательный двигательпродам новый первый танковый малый вертолетный вспомогательный газотурбинный двигатель аи 8 морские малоразмерные иноземцев корабельные российские судовые скубачевский авиационные газотурбинные двигатели для вмф россии 2016 год книга малой мощности россия скачать теория вспомогательные газотурбинные паротурбинные установки двигатели газотурбинным наддувом автомобильный маленький м90фр газотурбинный двигатель для авиамоделей для кораблей для фрегатов на автомобиле своими руками авто аи 20 аи 92 вертолета видео внутреннего сгорания гтд 1250 история купить недостатки принцип работы видео как работает дизельный газотурбинный двигатель реферат т 80 танка т 80 установка цена ямзиспользование газогидратов в газотурбинных двигателях диагностика газотурбинного газотурбинный расчет испытания камера сгорания принцип работы применение обороты мощность конструкция модель компрессор газотурбинного двигателя в танкемотоцикл с газотурбинным двигателемработа вал запуск кпд редуктор ресурс ремонт ротор схема характеристики устройство цикл газотурбинного двигателя видеозавод изготовление агрегаты лопатки производство лопаток разработка центр технологической компетенции лопатки эксплуатация топливо масло для типы металлокерамические вставки для газотурбинных двигателей россии

Коэффициент востребованности
350

comments powered by HyperComments

История

Впервые схему турбовинтового двигателя (ТВД), в котором воздушный винт имел привод от газовой турбины, разработал русский инженер и авиатор лейтенант флота М. Н. Никольский в 1913 г. Модель этого двигателя была построена и испытана. Его предполагали использовать для самолета «Илья Муромец». Двигатель Никольского развивал мощность 120 квт (160 л. с.) и имел трёхступенчатую газовую турбину.

В 1923 году В. И. Базаров предложил схему своего газотурбинного двигателя (ГТД), близкую к схемам современных турбовинтовых двигателей; в 1930 В. В. Уваров при участии Н. Р. Брилинга спроектировал, а в 1936 построил ГТД с центробежным компрессором. Независимо от отечественных инженеров в Великобритании учёный и инженер в 1926 году предложил свой проект подобного двигателя.

Первый в практическом смысле работающий ТВД был создан венгерским инженером Дьёрдем Ендрашиком (György Jendrassik). После ряда лет работы над ТВД (и получения патента на его конструкцию в 1929 г.) он построил прототип двигателя мощностью 100 л. с.; первый в мире полномасштабный турбовинтовой двигатель, Jendrassik Cs-1 мощностью около 400 л. с. был построен и испытывался на предприятии Ganz Works в Будапеште между 1939 и 1942 г. Двигатель не был запущен в производство.

В то же время в СССР в 1934 г. была создана и прошла длительные испытания первая отечественная высокотемпературная газотурбинная установка ГТУ-1, ставшая прообразом будущих турбовинтовых двигателей. Установка состояла из одноступенчатого центробежного компрессора, кольцевой камеры сгорания и одноступенчатой газовой турбины. В 1938–1939 гг. под руководством профессора В.В. Уварова для самолета ТБ-3 были впервые построены опытные газотурбинные установки ГТУ-3 мощностью по 1150 л. с., выполненные по схеме турбовинтового двигателя. Под его же руководством с 1943 г. в ЦИАМ разрабатывался летный образец экспериментального ТВД Э-3080, развивавшего мощность на валу 625 л. с. и создававшего дополнительную тягу 160 кгс.

Первый немецкий турбовинтовой двигатель в середине 30-х годов разработал (будучи профессором Технического университета в Берлине) будущий глава отдела планёров самолетов на «Junkers Flugzeugwerke» Герберт Вагнер. Он надеялся, что тот может дать боевому самолету высочайшие ЛТХ.

Работы по ТВД ускорились в послевоенные годы. На 18-м образце реактивного истребителя Gloster Meteor (позднее получил обозначение Trent-Meteor) вместо штатных турбореактивных были установлены турбовинтовые двигатели Rolls-Royce RB.50 «Trent», и он стал первым в мире турбовинтовым самолётом (взлетел 20 сентября 1945 года). Эта машина не строилась серийно и осталась прототипом.

На основе двигателей модели Trent компания Rolls-Royce разработала модель Dart. Этот двигатель устанавливался на первый в мире серийный турбовинтовой самолёт Vickers Viscount (первый полёт в 1948). Конструкция ТВД Rolls-Royce Dart оказалась весьма успешной: с учётом модификаций и усовершенствований, он выпускался порядка 40 лет (до 1987 г) и устанавливался на многие модели самолётов.

Самым мощным из когда-либо созданных ТВД был строившийся в СССР двигатель НК-12.

Одним из самых массовых и широко применяющихся ТВД в настоящее время является семейство ТВД Pratt & Whitney Canada PT6 (англ.)русск.. Серийный выпуск был начат в 1963 г. и продолжается на настоящее время (2012). Двигатель выпускается в ряде модификаций (различной мощности, для самолётов и вертолётов) и устанавливается на более чем 100 типах самолётов различных производителей.

Минус и плюс мотора

Газотурбинный агрегат способен вырабатывать большой момент, а значит повышенные показатели мощности. Для охлаждения сопутствующих элементов нет каких-либо устройств, поскольку соприкасающихся поверхностей мало. В то же время, подшипников используется не много, а качество деталей свидетельствует о надёжности и безотказности агрегата.

Отрицательный аспект, это дороговизна используемых материалов при изготовлении деталей и, как следствие, немалые вложения в починку механизма. Несмотря на недостатки, конструкция постоянно дорабатывается и совершенствуется.

Газотурбинный двигатель используют в авиации, на автомобилях установку применяют как эксперимент. Это произошло по причине постоянной потребности в охлаждении газов, поступающих на лопатки турбины. Это снижает полезное действие агрегата, увеличивая потребление горючего.

Главные преимущества мотора:

  • Пониженная степень загрязнения выхлопных газов;
  • Починка простая и лёгкая (не содержит расходных материалов);
  • Отсутствие вибрации;
  • Пониженный шум при эксплуатации агрегата;
  • Повышенные характеристики импульса;
  • Включение и отклик на педаль акселератора без задержек;
  • Повышено соотношение мощности и веса.

Танковая установка «ГТД-1500»:

Принцип работы газотурбинного двигателя Самые выгодные парогенераторы

На рис. 9.22 представлена схема одновального идеализированного ГТД, со­стоящего из центробежного компрессора, высокотемпературного источника тепловой энергии (нагревателя), соплового аппарата, осевой турбины, низ­котемпературного источника тепловой энергии (холодильника), редуктора и пускового устройства (стартера). Рабочее тело в таком тепловом двигате­ле движется по замкнутой траектории и не покидает пределов двигателя. Это позволяет заключить, что рассматриваемый идеализированный ГТД работает по замкнутому циклу.

Нагреватель

Подвода тепловой энергии

Пуск двигателя осуществляется с помощью электрического стартера, а затем его работа поддерживается самим двигателем автоматически. При пуске стартер раскручивает ротор турбины и компрессора, соединенные валом. Компрессор за счет действия центробежных сил перемещает рабо­чее тело к периферии. Рабочее тело движется от компрессора в сторону турбинной ступени, так как за турбиной давление ниже (равно атмосфер­ному давлению р0). Давление рабочего тела на выходе из компрессора опре­деляется характеристиками компрессора и турбинной ступени (соплового аппарата). Рабочее тело после компрессора проходит через диффузор, где его давление увеличивается до pi. От высокотемпературного источника энергии рабочему телу передается энергия в тепловой форме в количестве Qi. В результате нагревания внутренняя энергия (и температура) рабочего тела увеличиваются, а давление не изменяется (р = Idem).

Это обусловлено тем, что в процессе нагревания рабочее тело находится в открытом пространстве (справа и слева от него нет ограничивающих сте­нок). Рассматриваемое рабочее тело, как и любое другое тело, в результате нагревания несколько расширяется. Далее, поступая в турбинную ступень (сопловой аппарат и рабочее колесо), рабочее тело также расширяется. В некоторых типах турбинных ступеней рабочее тело расширяется только в сопловом аппарате. В результате расширения давление рабочего тела уменьшается от р\ до р0> а, скорость рабочего тела увеличивается, т. е. потенциальная энергия давления преобразуется в кинетическую энергию потока. В рабочем колесе компрессора поток рабочего тела отдает ки­нетическую энергию колесу, в результате чего оно вращается, приводя в движение внешние агрегаты через понижающий редуктор.

Таким образом, ГТД, как и поршневой двигатель, в своем составе имеет расширительную машину. Это еще раз доказывает, что процесс преобразования энергии из тепловой формы в механическую форму и обратно в циклически работающих машинах сопровождается сжатием и расширением рабочего тела.

После турбинной ступени рабочее тело поступает в холодильник, где от­дает часть своей внутренней энергии окружающей среде. Энергия отводит­ся в форме теплоты. В дальнейшем рабочее тело поступает в компрессор, и процесс повторяется.

Таким образом, в ГТД рабочее тело находится в непрерывном движении. Это позволяет непрерывно подводить к нему энергию в тепловой форме (в нагревателе) и также непрерывно отводить ее (в холодильнике). В поршневом двигателе процессы подвода энергии к рабочему тела и отвода ее в окружающую среду происходят прерывисто. Этот факт обуславливает некоторое преимущество ГТД перед поршневым двигателем. При прочих равных условиях характеристики ГТД должны быть лучше по сравнению с поршневым двигателем. Тем не менее, на практике выигрыш оказывается несущественным. Несмотря на это, ГТД получили широкое распростране­ние, особенно в авиации.

Какие бывают виды турбонаддува

Есть несколько способов нагнетания большего количество воздуха в двигатель:

  • резонансный наддув — реализуется без нагнетателя за счет кинетической энергии воздуха во впускных коллекторах;
  • механический наддув — подача воздуха увеличивается благодаря применению механического компрессора, который, в свою очередь, приводится в движение двигателем автомобиля;
  • газотурбинный наддув — турбину приводит в движение поток отработавших газов.

В первом случае наддув происходит лишь за счет особенной формы и размера впускных коллекторов без применения каких-либо нагнетателей. Поэтому мы не будем описывать его в этом материале, а остановимся подробнее на двух других вариантах, которые, на наш взгляд, заслуживают особого внимания.

Автомобильный газотурбинный двигатель Ford

В США закончены испытания нового газотурбинного двигателя, выпущенного концерном Ford для установки на грузовые автомобили, тягачи, тяжелые трактора и бульдозеры. Результаты испытаний показали, что достигнутые на данном этапе качества турбины позволяют использовать ее также и на легковых автомобилях

Наиболее существенная особенность газовой турбины в том, что разработчикам удалось достичь топливной экономичности даже лучшей, чем у обычных бензиновых двигателей на всем диапазоне рабочих режимов двигателя. В известных до сих пор газотурбинных двигателях удавалось добиться приближения к экономичности поршневых двигателей лишь на режиме больших нагрузок; на малых же нагрузках бензиновые двигатели, как правило, значительно экономичнее газовых турбин. Более того, удельный расход топлива новой турбины почти на всех режимах ниже, чем у поршневых двигателей.

Все это позволяет рассматривать создание новой турбины, как важный этап в развитии техники газотурбинных автомобилей. Газотурбинный двигатель Ford, модель 704, работает на бензине, керосине и легком дизельном топливе. Его высокие эксплуатационные качества обеспечиваются применением двухступенчатого сжатия воздуха в центробежных компрессорах.

Двигатель весит 300 кг. Его максимальная мощность превышает 300 л. с.

Турбовинтовой двигатель ТВД

Турбовинтовой двигатель. Привод винта от вала турбины осуществляется через редуктор

Устройство турбовинтового двигателя

Основная статья: Турбовинтовые двигатели

Турбовинтовые двигатели (ТВД) или турбовальные двигатели (ТВЛД)[источник не указан 24 дня] относятся к ВРД непрямой реакции.

Конструктивно ТВД схож с ТРД, в котором мощность, развиваемая последним каскадом турбины, передаётся на вал воздушного винта (обычно через редуктор). Этот двигатель не является, строго говоря, реактивным (реакция выхлопа турбины составляет не более 10 % его суммарной тяги), однако традиционно их относят к ВРД. Турбовинтовые двигатели используются в транспортной и гражданской авиации при полётах с крейсерскими скоростями 400—800 км/ч.

В ТВЛД газ, исходящий их камеры сгорания, направляется, во-первых, на турбину, приводящую в движение компрессор, а во-вторых, на турбину, связанную с приводным валом. Приводной вал механически соединяется с редуктором, приводящим в движение несущий винт. Таким образом, в ТВЛД связь ротора и выходного вала является чисто газодинамической. Такое техническое решение преимущественно применяется для силовых установок вертолетов из-за большого момента инерции несущего винта. В случае механической связи несущего винта с газогенератором запуск двигателя требует наличия стартера большой мощности.

Здравствуйте, друзья

ТРДД с вентилятором на входе.

В сегодняшней небольшой статье продолжаем более конкретное знакомство с типами авиационных двигателей. Двухконтурный турбореактивный двигатель (ТРДД) уже не раз упоминался по сайту и осталось только познакомиться с ним поближе.

Главная идея статьи в том, чтобы понять каково, собственно, главное отличие ТРДД от его предшественника, так сказать первого звена в двигательном семействе, обычного турбореактивного двигателя (ТРД).

Правильней, наверное, было бы сказать даже не просто отличие, а преимущество. Ведь на сегодняшний день ТРД активно сдает свои позиции (если уже не сдал совсем :-)) двухконтурному двигателю. ТРДД теперь превратился в самый распространенный воздушно-реактивный авиационный двигатель на земле.

Главная причина этому одна – высокая экономичность при столь же высокой тяговой эффективности. В наше время растущего энергодефицита такой важный фактор значит очень многое. Экономичность и, соответственно, дальность полета.Современный самолет с ТРДД имеет в этой области большие преимущества.

Первые разработки по теме двухконтурный турбореактивный двигатель начались еще в 19-м веке. Начал их (по крайней мере это официально известно :-)) русский инженер Федор Романович Гешвен (наш ! :-)). В 1939 году А.М. Люлька, ставший в последствии знаменитым конструктором авиадвигателей, разработал ТРДД такой схемы, которая используется в современных двухконтурных двигателях. Но ни тогда, ни в последующие годы проблема экономичности ТРД не стояла так остро, как сейчас. Это были скорее просто конструктивные варианты воздушно-реактивного двигателя, хотя выигрышно-положительные стороны их были известны.

Таковым положение дел оставалось вплоть до 50-х годов, когда ТРД уверенно стали завоевывать первенство среди авиационных двигателей мира. И уже тогда стал проявляться их, пожалуй, главный недостаток. На относительно небольших скоростях полета эти двигатели довольно неэкономичны. Или, говоря другими словами, имеют низкий коэффициент полезного действия.

В одной из прошлых статей я упомянул как-то прочитанный мной в одной из книг интересный факт, неплохо характеризующий этот недостаток. Там было сказано, что в течение одной летной смены полка сверхзвуковых бомбардировщиков ТУ-22 (они были оснащены ТРДФ) потреблялось количество керосина, равное месячному бюджету Белорусской ССР по топливу. За достоверность сказанного не ручаюсь, но очень похоже на правду :-).

Бомбардировщик ТУ-22.

То есть для повышения экономичности было бы конечно хорошо снизить подачу топлива в двигатель. Но ведь чем меньше топлива в камере сгорания, тем меньше температура газа. Воздушный поток, проходящий через двигатель, получит меньше энергии, и в дальнейшем, при выходе из сопла, скорость потока будет ниже. А это значит, что и тяга тоже уменьшится.

Выходит, ничего хорошего … Однако есть возможность этого избежать. Уменьшение тяги, полученное за счет падения скорости истечения газовоздушного потока из двигателя, можно компенсировать увеличением самого этого потока, то есть, правильней говоря, увеличением его массы. Или на техническом языке: нужно увеличить расход воздуха через двигатель. Чем больше масса воздуха, тем больше импульс тяги, создаваемый двигателем. Это, я думаю, всем уже ясно. Реактивное движение : чем больше из движка «вылетело», тем сильнее его самого толкнуло в обратную сторону :-).

Что же получилось в итоге? А то, что тяга осталась той же, а расход топлива уменьшился. То есть улучшилась экономичность, иначе говоря повысился коэффициент полезного действия двигателя (кпд).

Или же немного по-другому: можно при тех же энергетических затратах пропускать через двигатель значительно большую массу воздуха, но с малой скоростью ее истечения. При этом получим большую тягу с меньшими удельными параметрами расхода топлива. То есть суть дела та же :-)…

Все вышесказанное как раз и есть основной принцип работы двухконтурного турбореактивного двигателя. Получили, так сказать, мое любимое объяснение «на пальцах» :-)…

А теперь подтвердим этот факт парочкой формул. Тяга воздушно-реактивного двигателя (коим и является, как известно, ТРД) определяется простым выражением, вытекающим из закона сохранения импульса:

P = G (c — v) , здесь Р – тяга двигателя, G – это расход воздуха через двигатель (кг/с), c— скорость истечения газовоздушной струи из двигателя (м/с), v – скорость полета (м/с). Из этой формулы хорошо видно, что чем больше скорость реактивной струи, тем выше тяга двигателя.

ГАЗОТУРБИННЫЙ АВТОМОБИЛЬ

Преимущества Г. а. — отсутствие спец. жидкостного или возд. охлаждения, быстрый пуск двигателя при низких темп-pax воздуха, возможность использования жидких и газообразных топлив, незначит. токсичность отработавших газов и т. п. Однако ГТД сложны в изготовлении и ремонте, требуют применения жаростойких материалов и имеют повыш. расход топлива. Выпускаются ограниченно.

Газотурбинный автомобиль — автомобиль, оборудованный газотурбинным двигателем. Преимущества силовой установки Г. а. малая масса, небольшие размеры, отсутствие специального жидкостного или воздушного охлаждения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *