Устройство двигателя автомобиля по принципу Николауса Отто

Типы двигателей

Двигатель — устройство, преобразующее энергию сгорания топлива в механическую работу. Практически все автомобильные двигатели работают по циклу, состоящему из четырех тактов:

  • впуск воздуха или его смеси с топливом;
  • сжатие рабочей смеси,
  • рабочий ход при сгорании рабочей смеси;
  • выпуск отработавших газов.

Наибольшее распространение в автомобилях получили поршневые двигатели — бензиновые и дизели.

Бензиновые двигатели имеют принудительное зажигание топливо-воздушной смеси искровыми свечами. Различаются по типу системы питания:

  • в карбюраторных смешение бензина с воздухом начинается в карбюраторе и продолжается во впускном трубопроводе. В настоящее время выпуск таких двигателей снижается из-за низкой экономичности и несоответствия современным экологическим нормам;
  • в впрысковых двигателях топливо может подаваться одним инжектором (форсункой) в общий впускной трубопровод (центральный, моновпрыск) или несколькими инжекторами перед впускными клапанами каждого цилиндра (распределенный впрыск). В них возможно некоторое увеличение максимальной мощности и снижение расхода бензина и токсичности отработавших газов за счет более точной дозировки топлива электронной системой управления двигателем;
  • двигатели с непосредственным впрыскиванием бензина в камеру сгорания, который подается в цилиндр несколькими порциями, что оптимизирует процесс сгорания, позволяет двигателю работать на обедненных смесях, соответственно уменьшается расход топлива и выброс вредных веществ.

Дизели — двигатели, в которых воспламенение смеси топлива с воздухом происходит от повышения ее температуры при сжатии. По сравнению с бензиновыми эти двигатели обладают лучшей экономичностью (на 15-20%) благодаря большей (в два и более раз) степени сжатия (см. ниже), улучшающей процессы горения топливо-воздушной смеси. Достоинством дизелей является отсутствие дроссельной заслонки, которая создает сопротивление движению воздуха на впуске и увеличивает расход топлива. Максимальный крутящий момент (см. ниже) дизели развивают на меньшей частоте вращения коленчатого вала (в обиходе — “тяговиты на низах”).

Дизели устаревших конструкций обладали по сравнению с бензиновыми двигателями и рядом недостатков:

  • большей массой и стоимостью при одинаковой мощности из-за высокой степени сжатия (в 1,5-2 раза больше), увеличивавшей давление в цилиндрах и нагрузки на детали, что заставляло изготавливать более прочные элементы двигателя, увеличивая их габариты и вес;
  • большей шумностью из-за особенностей процесса горения топлива в цилиндрах;
  • меньшими максимальными оборотами коленвала из-за более высокой массы деталей, вызывавшей большие инерционные нагрузки. По этой же причине дизели, как правило, менее приемисты — медленнее набирают обороты.

Роторно-поршневой двигатель (Ванкеля) — в нем ротор-поршень совершает не возвратно-поступательное движение, как в бензиновых двигателях и дизелях, а вращается по определенной траектории. Благодаря этому он обладает хорошей приемистостью — быстро набирает обороты, обеспечивая автомобилю хорошую динамику разгона. Из-за конструктивных особенностей степень сжатия ограничена, поэтому работает только на бензине и обладает худшей экономичностью из-за формы камеры сгорания

Раньше его недостатком был меньший ресурс, а теперь и невысокие экологические показатели, которым сейчас уделяется большое внимание

Гибридная силовая установка представляет собой комбинацию поршневого двигателя (как правило, дизеля), электродвигателя, генератора и тяговых (тяговая аккумуляторная батарея, в отличие от стартерной, рассчитана на разряд большими токами (50-100 А) в течение 30-60 минут) аккумуляторных батарей. Работа этой установки происходит в различных режимах в зависимости от характера движения автомобиля. При интенсивном разгоне вместе работают поршневой и электрический двигатели. Во время торможения двигателем за счет энергии замедления генератор заряжает аккумуляторные батареи. При движении в городском цикле может работать только электродвигатель. Все это позволяет, сохраняя (или даже улучшая) динамику разгона, значительно повысить экономичность и снизить выброс вредных веществ.

Отношение диаметра цилиндра к ходу поршня

Одним из основополагающих конструктивных параметров ДВС является отношение хода поршня к диаметру цилиндра (или наоборот). Для более быстроходных бензиновых двигателей это отношение близко к 1, на дизельных моторах ход поршня, как правило, тем больше диаметра цилиндра, чем больше двигатель. Оптимальным с точки зрения газодинамики и охлаждения поршня является соотношение 1 : 1. Чем больше ход поршня, тем больший крутящий момент развивает двигатель и тем ниже его рабочий диапазон оборотов. Наоборот, чем больше диаметр цилиндра, тем выше рабочие обороты двигателя и тем ниже его крутящий момент на низких оборотах. Как правило, короткоходные ДВС (особенно гоночные) имеют больший крутящий момент на единицу рабочего объема, но на относительно высоких оборотах (больше 5000 об/мин.). При большем диаметре цилиндра/поршня сложнее обеспечить должный теплоотвод от донышка поршня ввиду его больших линейных размеров, но при высоких рабочих оборотах скорость поршня в цилиндре не превышает скорости поршня более длинноходного на его рабочих оборотах.

Показатели двигателей

Силы, действующие в цилиндре

Показателями двигателя называют величины, характеризующие его работу. Помимо конструктивных параметров, они зависят от особенностей и настроек систем питания и зажигания, степени износа деталей и пр.

Давление в конце такта сжатия (компрессия) является показателем технического состояния (изношенности) цилиндро-поршневой группы и клапанов.

Крутящий момент на коленчатом валу двигателя определяет силу тяги на колесах: чем он больше, тем лучше динамика разгона автомобиля. Равен произведению силы на плечо (рис. 3) и измеряется в Н·м (Ньютон на метр), ранее в кгс.м (килограмм-сила на метр).

Крутящий момент увеличивается с ростом:

  • рабочего объема . Поэтому двигатели, которым необходим значительный крутящий момент, обладают большим объемом;
  • давления горящих газов в цилиндрах , которое ограничено детонацией (взрывное горение бензо-воздушной смеси, сопровождаемое характерным звонким звуком. Ошибочно называется “стуком поршневых пальцев”) или ростом нагрузок в дизелях.

Максимальный крутящий момент двигатель развивает при определенных оборотах (см. ниже), они вместе с его величиной указываются в технической документации.

Мощность двигателя — величина, показывающая, какую работу он совершает в единицу времени, измеряется в кВт (ранее в лошадиных силах). Одна лошадиная сила (л.с.) приблизительно равняется 0,74 кВт. Мощность равна произведению крутящего момента на угловую скорость коленвала (число оборотов в минуту, умноженное на определенный коэффициент).

Двигатели большей мощности производители получают увеличением:

  • рабочего объема , что, в свою очередь, приводит к росту габаритов двигателя и ограничению допустимых максимальных оборотов из-за значительных сил инерции увеличившихся деталей;
  • оборотов коленчатого вала , число которых ограничено инерционными силами и увеличением износа деталей. Высокооборотный двигатель одинаковой мощности (при прочих равных условиях — конструкции двигателя, технологии изготовления, применяемых материалах и т.д.) с низкооборотным обладает меньшим сроком службы, так как в среднем для одного и того же пробега его коленчатый вал будет совершать больше оборотов;
  • давления в цилиндре путем повышения степени сжатия либо наддувом воздуха посредством турбо- или механических нагнетателей. Для применения наддува степень сжатия вынужденно уменьшают для предотвращения детонации (у бензиновых двигателей) и снижения жесткости работы (повышенные нагрузки в цилиндро-поршневой группе дизеля, сопровождаемые чрезмерным шумом) (у дизелей). Наддув позволяет, например, сохранить мощность при меньшем рабочем объеме.

Номинальная мощность — гарантируемая производителем мощность при полной подаче топлива на определенных оборотах. Именно она, а не максимальная мощность, указывается в технической документации на двигатель.

Удельный расход топлива — это количество топлива, расходуемого двигателем на 1 кВт развиваемой мощности за один час. Является показателем совершенства конструкции двигателя: чем расход ниже, тем более эффективно используется энергия сгорающего в цилиндрах топлива.

Дизельные двигатели

Дизельный двигатель был изобретён и запатентован в 1897 году. Автором изобретения принято считать Рудольфа Дизеля, в честь которого двигатель получил современное название.

Дизель отличается от классического бензинового двигателя тем, что в нём воздушные массы не смешиваются с горючим, а под давлением подаются в мотор отдельно. В результате сжатия, воздух разогревается до 700 градусов и более, а затем в двигатель подаётся топливо.

При соединении разогретого воздуха с горючим происходит возгорание, которое и порождает энергию, двигающую поршень. В этих двигателях используется дизельное опливо (солярка).

Также на эту тему вы можете почитать:

Новые автомобили до 500000 рублей в хорошей комплектации

10 лучших зарядных устройств для автомобильных аккумуляторов

Коробка передач автомобиля и ее предназначение

Самое главное про клиренс Опель Астра

Снять панель приборов ВАЗ 2114 для ремонта

Alex S Октябрь 2nd, 2013

Опубликовано в: Полезные советы и устройство авто

Метки: Советы автомобилистам

Зажигание и питание

Чтобы ДВС заработал и достиг рабочей температуры, необходимо его запустить. Многие отлично знают, что для этого необходимо совершить всего одно нехитрое действие: повернуть ключ в замке зажигания и лишь наблюдать за тем, как повышается , а показатели постепенно приходят в норму.

Чтобы ДВС успешно запускался, необходимо устройство, которое приводит его механические составляющие в действие. Таковым является , схема работы которого идентична простейшему . Стартер приводится в движение от энергии аккумуляторной батареи, которая при повороте ключа в замке зажигания подводит питание к выводам стартера.

Параллельно со стартером в действие приводится распределитель. Его задача — постоянное перенаправление электрической искры от на одну из четырех свечей, каждая из которых представляет собой пару электродов и устанавливается внутрь цилиндра.

Катушка зажигания перенимает энергию у аккумуляторной батареи и преобразовывает ее по той же схеме, как это делает трансформатор на электрических подстанциях. Таким образом, ток, составляющий стандартные 12 вольт, за доли секунды трансформируется в напряжение, достигающее внушительных 30 киловольт.

Система питания, которая подводит к ДВС смесь, состоящую из топлива и воздуха, состоит из топливного насоса, карбюратора или инжектора, а также воздушного и топливного фильтров. Топливный насос работает за счет вращения и предназначается для того, чтобы осуществлять беспрестанную подкачку бензина из бака.

Если речь идет о карбюраторной машине, то топливо попадает в камеры карбюратора через жиклеры, где смешивается с воздухом, поступающим извне, и затем продвигается в цилиндры по топливным шлангам.

В устройствах с поступает напрямую на форсунку, расположенную в цилиндре. Посредством электроники в таких системах автоматически контролируется качество смеси, а потому двигатель работает более эффективно и экономично.

Октановое число топлива

Энергия передаётся на коленчатый вал двигателя от расширяющихся газов во время рабочего хода. Сжатие топливо-воздушной смеси до объёма камеры сгорания повышает эффективность работы двигателя и увеличивает его КПД, но увеличение степени сжатия также увеличивает вызываемое сжатием нагревание рабочей смеси согласно закону Шарля.

Если топливо легковоспламеняемое, вспышка происходит до достижения поршнем ВМТ. Это, в свою очередь, заставит поршень провернуть коленвал в обратном направлении — такое явление называют обратной вспышкой.

Октановое число является мерой процентного содержания изооктана в гептан-октановой смеси и отражает способность топлива противостоять самовоспламенению под воздействием температуры. Топливо с более высокими октановыми числами позволяют двигателю с высокой степенью сжатия работать без склонности к самовоспламенению и детонации и, стало быть, иметь более высокую степень сжатия и более высокий КПД.

Работа дизельных двигателей обеспечивается самовоспламенением от сжатия в цилиндре чистого воздуха или бедной газовоздушной смеси, неспособной к самостоятельному горению (газодизель) и отсутствия в заряде топлива до последнего момента.

Работа поршня

Рассмотрим работу поршня по следующему рисунку.

Поршень в цилиндре совершает только возвратно-поступательные движения, то есть вверх-вниз. Это называется
ходом поршня. Крайние точки, между которыми двигается поршень, называются мертвыми точками: верхняя (ВМТ) и
нижняя (НМТ). Название «мертвая» идет от того, что в определенный момент, поршень, меняя направление на 180°,
как бы «застывает» в нижнем или верхнем положении на тысячные доли секунды.

ВМТ находится на определенном расстоянии до верхней границы цилиндра. Эта область в цилиндре называется
камерой сгорания. Область с ходом поршня носит название рабочего объема цилиндра. Это понятие вы, наверняка,
слышали при перечислении ха­рак­те­рис­тик любого двигателя автомобиля. Ну а сумма рабочего объема и камеры
сгорания об­ра­зу­ет полный объем цилиндра.

Соотношение полного объема цилиндра к объему камеры сгорания называется сте­пенью сжатия рабочей смеси. Это
довольно важный показатель в устройстве двигателя автомобиля. Насколько сильно сжата смесь, настолько
больше получается отдача при сго­ра­нии, которая преобразуется в механическую энергию.

С другой стороны, чрезмерное сжатие топливно-воздушной смеси приводит к ее взрыву, а не горению. Это явление
носит название «детонация». Она ведет к потере мощности и разрушению или чрезмерному износу всего двигателя. Для
избегания

детонации двигателя

современное топливное производство выпускает бензин, устойчивый к высокой степени сжатия.
Каждый видел на АЗС надписи вроде АИ-92 или АИ-95. Цифра обозначает октановое число. Чем больше ее значение, тем
больше устойчивость топлива к детонации, со­от­ветст­вен­но его можно применять с большей степенью сжатия.

Как устроен поршневой двигатель и его основные системы

Поршневой двигатель пока лидирует в распространенности и под капотом каждого автомобиля, под баком каждого мотоцикла находится именно он. Некто Ванкель пытался создать альтернативный роторный двигатель, но ему не удалось довести конструкцию до совершенства, поэтому мы о нем вспоминаем вскользь. Обычный поршневой ДВС может работать на бензине, дизельном топливе, на газе, а также на спиртовых составах. Рассматриваются также возможности применения водорода в качестве топлива, но широкого распространения такая конструкция не получила, несмотря на экологичность и перспективность.

Конструктивно, главные роли в моторе играют кривошипно-шатунный и газораспределительный механизмы. Их стабильную работу стремятся обеспечить ряд систем, главными среди которых можно назвать систему подачи топлива, смазки, выпуска, охлаждения и зажигания.

Все это хозяйство собрано на базе самых массивных деталей — блока цилиндров и головки блока. Вкратце ознакомимся с основными механизмами, иначе понять принцип действия ДВС будет тяжело.

Поршневой двигатель сегодня находится под капотом каждого авто

Чтобы превратить возвратно-поступательное движение во вращательное, служит кривошипно-шатунный механизм. Именно он преобразует движения поршня во вращение коленвала. Чтобы обеспечить своевременную подачу топлива и отвод отработанных газов из цилиндров, разработан газораспределительный механизм, приводящийся в движение от коленвала. Отработанные газы выводятся наружу посредством выхлопной системы, а впускная система обеспечивает подачу нужного количества топлива, которой руководит система управления — электронный блок управления (ЭБУ).

Дизельные двигатели не нуждаются в системе зажигания, поскольку дизельное топливо воспламеняется под давлением самостоятельно, а бензин нужно принудительно поджигать, для чего и служит система зажигания. Абсолютно все детали ДВС трутся между собой, и для уменьшения коэффициента трения применяется смазка, которую распределяет по всему мотору соответствующая система. В процессе работы силовой агрегат выделяет огромное количество тепла, которое отводит и передает атмосфере система охлаждения.

Отличие двигателей внутреннего сгорания от двигателей внешнего сгорания

ДВС называется так именно потому, что топливо сжигается внутри рабочего органа (цилиндра), промежуточный теплоноситель, например пар, здесь не нужен, как это организовано в паровозах. Если рассматривать паровой двигатель и двигатель, но уже внутреннего сгорания автомобиля, устройство их сходно, это очевидно (на рисунке справа паровой двигатель, слева – ДВС).
Принцип работы одинаков: на поршень, действует какая-то сила. От этого поршень вынужден двигаться вперед или назад (возвратно-поступательно). Эти движения при помощи специального механизма (кривошипного) преобразуются во вращение (колеса у паровоза и коленчатого вала «коленвала» у автомобиля). В двигателях внешнего сгорания нагревается вода, превращаясь в пар, и уже этот пар совершает полезную работу толкая поршень, а в ДВС мы нагреваем воздух внутри (непосредственно в цилиндре)и он (воздух) двигает поршень. От этого коэффициент полезного действия, у ДВС, конечно, выше.

Охлаждение

Как уже было отмечено, двигатель работает при высоких температурах. Нагрев вызывается не только постоянным трением деталей друг об друга, но и процессами горения, которые происходят в цилиндре и неизбежно передают температуру всем остальным металлическим деталям.

Обработка приводит к тому, что жидкость не застывает в мороз и не кипит при высокой температуре: эти свойства необходимы для того, чтобы при температурных перепадах металл не разрушался и не растрескивался.

Циркулируя по каналам, жидкость, которая зачастую является тосолом или антифризом, забирает излишнее тепло у двигателя и переносит его вместе с собой к радиатору, где энергия успешно рассеивается в окружающую среду.

Чтобы движение охлаждающей жидкости было постоянным, функционирует водяная помпа, которая при помощи ременной передачи связана с коленчатым валом двигателя и вращается с ним синхронно. Помпа представляет собой крыльчатку, которая располагается в корпусе и подвижно закрепляется на вращающейся оси. Как только двигатель приводится в движение, крыльчатка начинает переносить жидкость от двигателя к радиатору и наоборот, тем самым обеспечивая постоянный теплообмен.

Также система охлаждения оборудуется термостатом — приспособлением, которое призвано ускорить прогрев двигателя. Термостат перекрывает ток тосола, пока двигатель недостаточно прогрелся, и лишь затем открывается и пропускает жидкость в каналы.

Одноцилиндровый двигатель

Для наглядности на рисунке показано устройство одноцилиндрового двигателя ав­то­мо­би­ля.

В одноцилиндровом двигателе рабочий цилиндр изнутри представляет собой замк­ну­тое пространство.
Поршень, соединенный через шатун с
коленчатым валом, является единственным подвижным элементом в цилиндре одноцилиндрового двигателя.
Когда пары топлива и воздуха
воспламеняются, вся высвобождаемая энергия давит на стенки цилиндра и поршень, заставляя его перемещаться
вниз. Конструкция коленчатого вала в од­но­ци­линд­ро­вом двигателе выполнена таким образом, что
движением поршня через шатун создается
крутящий момент, заставляя проворачиваться сам вал и получать вращательную энергию. Таким образом,
высвобождаемая энергия от горения рабочей смеси преобразуется в ме­ха­ни­чес­кую энергию.

Для приготовления топливно-воздушной смеси используются два способа: внутреннее или внешнее смесеобразование.
Оба способа еще отличаются по составу рабочей смеси и методов ее воспламенения.

Чтобы иметь четкое понятие об устройстве двигателя автомобиля, стоит знать, что в двигателях применяют
два вида топлива: бензин и дизельное
топливо. Оба вида энер­го­но­си­те­лей получаются на основе переработки нефти. Бензин очень хорошо испаряется на
воздухе. Поэтому для двигателей, работающих на бензине, для получения топливно-воздушной смеси применяется
такое устройство как карбюратор. Более подробно

устройство карбюратора

будет рассмотрено в разделе, посвященном

системе питания двигателя.

В карбюраторе поток воздуха смешивается с капельками бензина и подается в цилиндр.
Там полученная топливно-воздушная смесь воспламеняется при подаче искры через

свечу за­жи­га­ния для двигателя.

Дизельное топливо (ДТ) обладает малой испаряемостью при обычной температуре, но при смешивании с воздухом
под огромным давлением, полученная смесь са­мо­вос­пла­ме­ня­ет­ся. На этом и
основан принцип работы дизельных двигателей

( см. устройство ди­зель­но­го двигателя ).

ДТ впрыскивается в цилиндр отдельно от воздуха через форсунку. Узкие сопла форсунки в сочетании с большим давлением
при впрыскивании в цилиндр превращают дизельное топливо в мелкие капли, которые смешиваются с воздухом. Для
визуального представления — это аналогично тому, когда вы давите на крышку баллончика с духами или одеколоном:
выдавливаемая жидкость моментально смешивается с воздухом, образуя мел­ко­дис­пер­си­он­ную
смесь, которая тут же распыляется,
оставляя приятный аромат. Тот же самый эффект распыления происходит и в цилиндре. Поршень, двигаясь вверх, сжимает
воздушное пространство, увеличивая давление, и смесь самовозгорается, заставляя поршень двигаться в обратном направлении.

В обоих случаях качество приготовленной рабочей смеси сильно влияет на пол­но­цен­ную работу двигателя. Если идет
недостаток в топливе или воздухе — рабочая смесь не полностью сгорает, а вырабатываемая мощность двигателя существенно
уменьшается.

Как же и за счет чего подается рабочая смесь в цилиндр?

На рисунке видно, что от цилиндра вверх выходят два стержня с большими шляпками. Это впускной и
выпускной клапаны, которые закрываются и открываются в определенные моменты времени, обеспечивая рабочие процессы в
цилиндре. Они могут быть оба закрыты, но никогда оба не могут быть открыты. Об этом будет сказано чуть позже.

На бензиновом двигателе в цилиндре присутствует та самая свеча, которая вос­пла­ме­ня­ет
топливно-воздушную смесь. Это
происходит за счет возникновения искры под воз­дейст­ви­ем электрического разряда. Принцип действия и работы будет
рассмотрен при изучении

системы зажигания двигателя.

Впускной клапан обеспечивает своевременное поступление рабочей смеси в цилиндр, а выпускной клапан — своевременный
выпуск отработавших газов, которые больше не нужны. Клапаны работают в определенный момент времени движения поршня.
Весь процесс превращения энергии от сгорания в механическую энергию называется рабочим циклом, состоящим из четырех
тактов: впуск рабочей смеси, сжатие, рабочий ход и выпуск от­ра­бо­тав­ших газов.
Отсюда и название — четырехтактный двигатель.

Вторичные двигатели

Электродвигатели

В 1834 году русский учёный Борис Семёнович Якоби (так писалось его имя в русской транскрипции) создал первый пригодный для практического использования электродвигатель постоянного тока.

В 1888 году сербский студент и будущий великий изобретатель Никола Тесла высказал принцип построения двухфазных двигателей переменного тока, а год спустя русский инженер Михаил Осипович Доливо-Добровольский создал первый в мире 3-фазный асинхронный электродвигатель, ставший наиболее распространённой электрической машиной.

Пневмодвигатели и гидромашины

Пневмодвигатели и гидромашины, соответственно, работают от сетей (баллонов) высокого давления воздуха или жидкости преобразуя гидравлическую (пневматическую) энергию насосов. Их широко применяют в качестве исполнительных механизмов в различных устройствах и системах. Так, созданы пневмолокомотивы (особенно пригодны для работ во взрывоопасных условиях, например в шахтах, где тепловые двигатели не применимы из-за температурных условий, а электрические — из-за искр при коммутации), с помощью гидромашин осуществляется привод гусениц в некоторых типах тракторов и танков, перемещение рабочих органов бульдозеров и экскаваторов. Всё разнообразнее конструкции экологически чистых городских автомобилях на пневмоприводах, предлагаемых инженерами разных стран. Вторичные двигатели играют большую роль в технике, однако их мощность относительно невелика. Их также широко применяют и в миниатюрных и сверхминиатюрных устройствах.

Историческая справка

На самом деле, двигатель внутреннего сгорания — это не инновационная находка в техническом мире, и его строение известно давно. Тем не менее, в первых ДВС ресурс был крайне невелик. История создания подобных агрегатов берет начало более двух столетий назад, когда эра паровых машин достигла своего расцвета, но пытливые умы ученых пытались изобрести более совершенные, экономичные и надежные конструкции, работающие на альтернативном топливе.

Таким образом, было установлено, что при горении газ расширяется в несколько раз, выделяя при этом немалое количество энергии и увеличивая свою температуру, и у такого ДВС ресурс стал несколько выше. Кроме того, такой газ горел крайне медленно, что позволило сделать вывод об экономичности его расхода.

Из чего состоял подобный двигатель авто, и в чем особенности его строения? В его основе лежали два компрессора, имеющих высокую рабочую температуру. Первый из них подавал в камеру сгорания воздух, а второй — газ. В результате смешения получалась некая смесь, которая была способна гореть и двигать поршень вверх или вниз.

История создания первого прообраза составляющих шатунного механизма, превращающего поступательное движение во вращательное, содержит в себе имя Жана Этьена Ленуара, который произвел собственное исследование и выяснил, из чего должен состоять двигатель, имеющий достаточную надежность, долговечность и совершенство конструкции.

Также история создания идеи современного типа розжига смеси принадлежит имени Ленуара. Так, он впервые предположил, что воспламенять смесь при помощи открытого огня неразумно. Также Ленуар выяснил, что поршень быстро разогревается, расширяется и застревает в цилиндре, из чего можно было сделать вывод, что детали нуждаются в постоянном охлаждении. Так была реализована система жидкостного охлаждения, хоть и далекая от техники, выпускаемой на сегодняшний день и имеющая чрезмерно большой вес и низкую эффективность по уменьшению температуры.

Кроме того, для предотвращения усиленного трения и уменьшения рабочей температуры, учеными была изобретена система смазки, которая позволяла поршню нагреваться меньше, и, таким образом, работать долгое время, не выводя из строя составляющие ДВС.

Дальнейшая история создания такого агрегата, как ДВС, связана с фамилией Отто. Он отметил, что важнее всего при проектировании ДВС — ресурс и его долговечность, и предпринял попытку его доработки. На первый взгляд, такой мотор казался менее совершенным, чем модель Ленуара, однако на деле оказалось, что новая модель обладает меньшим весом и лучшими характеристиками.

Стоит отметить, что здесь впервые было применено некое подобие шатунного механизма. Так, поршень был жестко привязан к рейке, которая соединяла его с валом. Вал вращался и приводил в действие набор шестерен.

После этого предпринимались неоднократные попытки перейти к более совершенному источнику топлива, который имел бы меньший удельный вес, и уменьшить рабочую температуру конструкции. В 1872 году некий Брайтон решил перейти на двигатели внутреннего сгорания с керосином, чтобы проверить свою теорию.

Эксперимент не оказался успешным, из чего был сделан вывод о том, что топливо, которое заливается в двигатели внутреннего сгорания, необходимо искать дальше. Так оказалось, что бензин, обладающий меньшим удельным весом, что является несомненным его преимуществом, и есть самый подходящий источник энергии.

Главная — ресурс всех его элементов. В связи с этим, общую доработку существовавшей конструкции произвели Даймлер и Майбах в 1880 году, из чего можно сделать вывод, что такая модель является наиболее приближенной к той, что применятся на современных двигателях внутреннего сгорания. Так, появился карбюратор жиклерного типа, который обладает меньшим весом, чем генератор, и, благодаря небольшим размерам, имеет более удачное расположение.

Принцип действия четырехтактного карбюраторного двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд

последовательных процессов, протекающих в каждом цилиндре двигателя и

обусловливающих превращение тепловой энергии в механическую работу.

Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Автомобильные двигатели работают, как правило, по четырехтактному

циклу, который совершается за два оборота коленчатого вала или четыре

хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего

хода) и выпуска.

В карбюраторном четырехтактном одноцилиндровом двигателе рабочий цикл происходит следующим образом:

1. Такт впуска. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение 0.07 — 0.095 МПа, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

2. Такт сжатия. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

3. Такт расширения или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ.

В процессе такта расширения шарнирно связанный с поршнем шатун

совершает сложное движение и через кривошип приводит во вращение

коленчатый вал. При расширении газы совершают полезную работу, поэтому

ход поршня при третьем полуобороте коленчатого вала называют рабочим

ходом.

В конце рабочего хода поршня, при нахождении его около НМТ

открывается выпускной клапан, давление в цилиндре снижается до 0.3 —

0.75 МПа, а температура до 950 — 1200 С.

4. Такт выпуска. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

Карбюратор

Расшифровка его маркировки поможет выяснить особенности его конструкции. Задача карбюратора — смешение топлива и воздуха таким образом, чтобы обеспечивать наиболее эффективное сгорание, в зависимости от режима работы, из чего можно сделать вывод, что система имеет достаточно сложное устройство.

Из каких деталей и частей состоит современный карбюратор мотора, и о чем может сказать общая расшифровка его названия? Главный элемент — это шланг или патрубок, который связывает с основным бензонасоса для бесперебойной подачи бензина. Топливный насос приводится в действие самим двигателем, который питается за счет карбюратора.

Поступая, топливо приходит в основной жиклер, или распылитель, который состоят из нескольких цилиндров, вложенных друг в друга. Задача такого распылителя — равномерно распределить топливо в первичной и вторичной камерах, чтобы обеспечить более качественное смешение с воздухом. К слову, воздух поступает в камеру не напрямую, а через фильтр, который помогает отсеять любые посторонние примеси, выводящие из строя топливопровод и его части.

Качеством смеси управляет основная заслонка, и расшифровка номера карбюратора поможет выяснить ее тип. Она имеет расположение в центральной части корпуса и обладает меньшей рабочей температурой, чем топливо. Так, изменяя пропорции бензина и воздуха, можно регулировать обороты мотора и интенсивность вращения вала, а также температуру ДВС. По такому же принципу устроена и педаль акселератора, которая контролирует количество поступающей в мотор смеси.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *