При какой температуре замерзает бензин
Содержание:
Октановое число
Название марки бензина состоит из буквенно-цифрового обозначения. Буквы А или АИ указывают на метод определения октанового числа:
- моторный (А)
- исследовательский (АИ)
а цифра определяет октановое число (92, 95 и т.д.).
Значение октанового числа указывает на такое свойство, как стойкость бензина к детонации. Цифра эта относительная. В качестве эталона принимается изооктан, детонационная стойкость которого очень высока и принимается равной 100. Шкала октанового числа была предложена в начале прошлого века. Оно определялось содержанием изооктана в смеси с нормальным гептаном (его детонационная стойкость очень низкая и принимается равной нулю). Соответственно, бензин марки АИ-92 эквивалентен по своей устойчивости к детонации 92-процентной смеси изооктана с гептаном, АИ-95 – 95% и так далее. Октановое число может быть и больше 100, если антидетонационные свойства топлива еще выше, чем у чистого изооктана.
Это значение очень важно, поскольку детонация приводит к быстрому разрушению цилиндро-поршневой группы. Объясняется это скоростью распространения фронта пламени – до 2,5 км/с, тогда как в нормальных условиях пламя распространяется со скоростью не более 60 м/с
Чтобы повысить антидетонационные свойства, можно либо добавить присадки, содержащие соединения свинца (тетраэтилсвинец), либо изменить фракционный состав при получении. Первый способ получает с легкостью получить из бензина АИ-92 АИ-95, или 98, однако в настоящее время от него отказались. Поскольку, хотя такие присадки значительно повышают эксплуатационные свойства топлива и имеют низкую себестоимость, они так же весьма ядовиты и на экологию оказывают куда более губительное воздействие, чем чистый бензин, а также разрушают каталитический нейтрализатор автомобиля (температура сгорания этилированного бензина выше, чем у неэтилированного, в результате керамические элементы нейтрализатора попросту спекаются, и устройство выходит из строя).
В качестве присадок могут быть использованы и другие соединения, менее токсичные, такие как этиловый спирт или ацетон. Например, если добавить 100 мл спирта в литр бензина АИ-92, то октановое число увеличится до 95. Однако применение таких присадок экономически невыгодно.
Про температуру и замерзание
Сама нефть становится густой уже при — 25 — 30 градусах Цельсия, но бензин это ее, если хотите летучее соединение, оно имеет гораздо более низкий уровень замерзания.
Для средней полосы, где морозы примерно в — 20 – 35 градусов, можно ни о чем не беспокоиться, замерзание бензина в баке, на морозе — здесь просто физически неосуществимо.
Если честно, то в Арктике, существует свой специальный бензин, он так и называется – «Арктический». У него порог еще более понижен, так при помощи специальной формулы и добавок он остается жидким до – 150 градусов Цельсия, что более чем достаточно, все же таких температур на земле практически НЕТ!
Но замерзание топлива, это еще не самое страшное – нужно чтобы оно оставляло за собой возможность воспламенения, иначе от него толку будет мало, так называемая – вязкость! Так Российские ГОСТЫ (ГОСТ Р 51105-97 и ГОСТ Р 51866-2002 – «с изменениями»), характеризуют не только содержание серы в топливе, но и минимальную температуру при которой должна происходить вспышка в цилиндрах двигателя, сейчас она равна – 62 градуса. То есть при этой температуре бензины популярных марок – должны воспламеняться и не густеть.
Топливо — широкий фракционный состав
Топлива широкого фракционного состава имеют тот существенный недостаток, что они обладают повышенной летучестью, высоким давлением насыщенных паров. Вследствие этого при работе на топли-вах широкого фракционного состава возникают некоторые затруднения, связанные с их испарением и кипением на больших высотах; однако при полетах на высотах до 10 — 12 км применение топлив широкого фракционного состава, имеющих давление паров не выше 100 — 150 мм рт. ст., вполне приемлемо.
Топлива широкого фракционного состава и типа керосина, как правило, представляют собой продукты, получаемые прямой перегонкой нефти.
Топливо Т-2 широкого фракционного состава, содержащее меркаптаны, в большей степени, чем топливо ТС-1, оказывает коррозионное воздействие на медь.
Применение имеет топливо JP-3 широкого фракционного состава с упругостью пара 267 — 374 мм рт. ст., по повышенная упругость пара затрудняет применение этого топлива на больших высотах при низком давлении. Этим недостатком не обладают топлива JP-4 и JP-5, имеющие упругость пара 107 — 160 мм рт. ст. Они получаются путем прямой гонки продуктов термического и каталитического крекингов, гидрокрекингом. Температура начала кристаллизации топлива JP-5 повышена до — 40 С и фракционный состав его более тяжелый по сравнению с другими топливами.
Нагарообразующую способность топлив широкого фракционного состава ( топлива В, JP-4) характеризуют индексом дымления и летучести, численно равным сумме высоты некоптящего пламени топлива ( в мм) и произведения коэффициента 0 42 на количество фракций топлива ( в объемн.
В настоящее время топлива широкого фракционного состава получают из некоторых газоконденсатов и используют в отдаленных северных и северо-восточных районах страны, куда доставка стандартного дизельного топлива затруднительна.
Первое характерно только для топлива широкого фракционного состава; при сгорании топлива, перегоняющегося в очень узких температурных пределах или тем более однокомпонентного, во все цилиндры поступают одни и те же компоненты топлива, даже если топливо испаряется не полностью. Bo-втором случае только при полном испарении топлива и хорошем перемешивании его паров с воздухом может быть обеспечен один и тот же, соответствующий заданному, состав рабочей смеси по разным цилиндрам. Если перемешивание паров топлива с воздухом недостаточно интенсивно, а тем более если испаряемость топлива недостаточна, то даже при работе на однокомпонентном топливе состав рабочей смеси по отдельным цилиндрам будет различен. Наибольшая неравномерность составных частей топлива и состава рабочей смеси имеется при наличии топливной пленки на стенках впускного трубопровода.
При оценке нагарообразующей способности топлив широкого фракционного состава важное значение имеет их испаряемость. Поэтому нагарообразующую способность этих топлив оценивают по величине индекса нагарообразования, который связывает точку дымления и характеристику испаряемости топлива
Испытания показали, что между индексом нагарообразования и количеством нагара в двигателе, как видно из приведенных ниже цифр, существует зависимость.
Выпускаются двух сортов: JP-4 — топливо широкого фракционного состава и JP-5 — керосин с высокой температурой вспышки.
Среди реактивных топлив лучшей испаряемостью характеризуются топлива широкого фракционного состава типа Т-2 и JP-4, которые содержат в своем составе бензиновые фракции и имеют давление насыщенных паров в пределах 80 — 160 мм. Низкой испаряемостью характеризуются топлива типа керосина ТС-1, Т-1, Т-5, Т-6, Т-7, JP-1, JP-5 и JP-6 и др., которые имеют температуру начала кипения 130 — 195 и давление насыщенных паров, не более 40 мм.
В реактивных топливах типа авиакеросинов и топлив широкого фракционного состава всегда содержится некоторое количество соединений серы, азота и кислорода.
Расчетные методы непригодны для определения ЦЧ топлив широкого фракционного состава, содержащих бензиновые фракции, а также топлив с присадками, повышающими ЦЧ.
Для самолетов с турбовинтовыми двигателями могут применяться топлива широкого фракционного состава. Топливо JP-4 рекомендуется для сверхзвуковой авиации при скоростях полета до 1800 км / час, топливо JP-5, как более тяжелое — для скоростей до 3600 км / час, при этом часть топлива может подаваться в двигатель в испаренном виде в связи со значительным разогревом самолета и его баков при аэродинамическом торможении.
Для самолетов с турбовинтовыми двигателями могут применяться топлива широкого фракционного состава.
Зависимость медианного диаметра капли от отношения. радиус сопла / siu а / 2.| Коэффициент распределения для форсунок, работающих под давлением. |
Испарение — топливо
Теплота испарения топлива оказывает значительное влияние на весовое наполнение цилиндров двигателя свежей смесью. С этим связано использование топлив, имеющих высокую теплоту испарения, в качестве топлив для гоночных автомобилей. Теплоту испарения измеряют в калориметрах.
Полнота испарения топлива при образовании горючей смеси зависит от химического состава топлива, а также от конструктивных и эксплуатационных факторов.
Скорость испарения топлива зависит от качества распыливания, турбулентности потока газов, температуры и испаряемости топлива. В зависимости от этих факторов испарение и сгорание топлива в двигателе могут быть полными или неполными.
Впускной коллектор с фильтром. |
Для лучшего испарения топлива организуют дополнительный подогрев горючей смеси отработавшими газами или водой, поступающей из системы охлаждения и проходящей между двойными стенками впускного трубопровода.
Для лучшего испарения топлива во впускном трубопроводе предусматривается подогрев горючей смеси. Для этой цели в средней части его устроена камера подогрева с двойными стенками, между которыми циркулируют отработавшие газы, поступающие через специальное окно из выпускного трубопровода.
Для надежного испарения топлива в рабочей смеси требуется подогрев поступающего воздуха, причем необходимая степень подогрева зависит: 1) от сорта топлива, 2) от состава рабочей смеси и 3) от состояния наружного воздуха.
При испарении топлива в замкнутом пространстве одновременно происходит конденсация паров.
При испарении топлива образуются влажные пары серого цвета, постепенно перемешивающиеся с воздухом, движущимся по направлению к цилиндрам.
При испарении топлива в замкнутом пространстве одновременно происходит конденсация паров.
При испарении топлива молекулы его вылетают из жидкости в окружающий воздух. Часть испарившихся молекул может снова удариться о поверхность жидкости и поглотиться ею. Степень испарения топлива определяется разностью между количеством молекул, вылетающих из жидкости и снова ею поглощаемых. Интенсивность или скорость испарения зависит от начальной концентрации молекул данного топлива в воздухе и от скорости их диффузии. Если газовое пространство над жидкостью не ограничено, то испарение происходит с максимальной скоростью. В этом случае имеет место свободное испарение. В замкнутом объеме в начальный момент скорость испарения равна скорости свободного испарения, но по мере насыщения воздуха молекулами топлива увеличивается число молекул, возвращающихся обратно в жидкую фазу, и процесс испарения замедляется. При определенной концентрации молекул топлива в воздухе число вылетающих из жидкости и возвращающихся в нее молекул уравнивается, наступает состояние динамического равновесия.
При испарении топлива молекулы его вылетают из жидкости и либо совсем покидают ее, диффундируя в окружающую среду ( воздух), либо, ударяясь о поверхность жидкости, снова поглощаются ею; при этом поглощается только небольшая часть молекул, характеризуемая коэффициентом аккомодации молекул пара жидкостью.
При испарении топлива молекулы его вылетают из жидкости в окружающий воздух. Часть испарившихся молекул может снова удариться о поверхность жидкости и поглотиться ею. Степень испарения топлива определяется разностью между количеством молекул, вылетающих из жидкости и снова ею поглощаемых.
Зависимость удельной скрытой теплоты испарения нормальных парафиновых углеводородов от их температуры. |
Конечно, испарение топлива может происходить и при более низкой и более высокой температуре, чем указанная, но суммарный эффект, о котором мы только и можем судить, получается таким, как если бы испарение топлива происходило именно при этой температуре. Можно предполагать, что эта температура будет близка к равновесной температуре капли, когда скорость охлаждения капли вследствие испарения будет равна скорости ее нагревания вследствие теплопередачи от воздуха.
Фракционный состав — топливо
Диск с чашечками. |
Влияние фракционного состава топлива на его лакообразование ясно видно на примере продуктов прямой перегонки нефти: наименьшее количество лака дают бензины, керосины больше склонны к ла-кообразованию, а дизельные топлива образуют наибольшее ( в мг на 10 мл топлива) количество лака.
Потери реактивных топлив от испарения в зависимости от их температуры. |
С фракционным составом топлива связана и его теплота сгорания.
Влияние давления паров топлива на производительность насосов. |
С фракционным составом топлива связана и его теплота сгорания. Она может быть отнесена к единице объема и единице веса. Как уже указывалось, реактивные двигатели, обеспечивая на значительной высоте большую скорость самолетов, характеризуются высоким расходом т & члива, и радиус действия самолетов во многом зависит от необходимого запаса топлива. Так как объем топливных баков реактивных самолетов ограничен, то для топлива в первую очередь важна объемная теплота сгорания.
С фракционным составом топлива тесно связана температура вспышки, при которой пары нефтепродукта с воздухом образуют горючую смесь, вспыхивающую при поднесении огня. Топливо нагревают и лерио дически подносят к его поверхности запальную лампочку. Темпера туру вспышки фиксируют по моменту появления на поверхности быстро исчезающего пламени.
Фракционный состав дизельного топлива. |
С фракционным составом топлива тесно связана температура вспышки, при которой пары нефтепродукта с воздухом образуют горючую смесь, вспыхивающую при поднесении огня. Определяют температуру вспышки ( ГОСТ 6356 — 75) в приборе закрытого типа. Топливо нагревают и периодически подносят к его поверхности запальную лампочку.
Особенно важен фракционный состав топлив для быстроходных дизелей, так как в этих двигателях на цикл полного сгорания топливо-воздушной смеси отводится чрезвычайно малое время. Как правило, чем больше число оборотов дизеля, тем более легкое топливо требуется для него. Предел выкипания топлива ограничивается условиями нормального сгорания; чрезмерно большое количество легких или тяжелых фракций в дизельном топливе отрицательно сказывается на процессе сгорания. Если в топливе содержится слишком много легких фракций, то в цилиндре двигателя сильно повышается давление; это вызывает появление резких стуков в цилиндре, и работа дизеля становится жесткой. Повышение содержания тяжелых фракций приводит к неполному сгоранию топлива ( вследствие кратковременности цикла сгорания), и двигатель загрязняется продуктами неполного сгорания.
С утяжелением фракционного состава топлива и увеличением содержания в нем ароматических углеводородов количества осадка повышается. Это связано с неполным испарением и сгоранием топлива.
Степень влияния фракционного состава топлива на работу двигателя в значительной мере зависит от режима его работы и температуры окружающего воздуха. При работе в зимнее время без подогрева рабочей смеси на прикрытом дросселе или на часто меняющемся режиме влияние фракционного состава топлива сказывается особенно сильно.
Влияние давления паров топлива на производительность насосов. |
С облегчением фракционного состава топлива, точнее с увеличением давления его паров, ухудшается работа насосов. Как видно из кривых рис. 153, производительность насосов на топливе с давлением паров 360 мм рт. ст. ниже, чем на топливе с практически нулевым давлением паров; снижение производительности с уменьшением давления напора происходит более резко. Размер и вес насоса пропорциональны отношению пара к жидкому топливу. Поэтому для перекачки топлива, имеющего давление паров 360 мм рт. ст., требуются насосы, в 2 — 4 раза большие по размеру, чем для перекачки керосина.
Чрезмерное облегчение фракционного состава топлива не менее вредно сказывается на работе дизеля, чем чрезмерное утяжеление.
Испарение — топливо
Испарение топлива в дизелях начинается сразу после его впрыска в камеру сгорания и продолжается до сгорания последних порций топлива. На приготовление горючей смеси в дизеле отводится в 10 раз меньше времени, чем в карбюраторном двигателе, и в то же время в дизеле удается использовать более тяжелые топлива с худшей испаряемостью. Это объясняется тем, что в дизелях хорошо распыленное топливо впрыскивается в воздух, нагретый за счет сжатия до 500 — 600 С. Такие условия обеспечивают интенсивный прогрев и испарение капель топлива.
Испарение топлива в потоке воздуха находится также в прямой зависимости от скорости диффузии паров. Различные сорта топлива обладают различным коэфф.
Испарение топлива осуществляют при регламентированной ( высокой) температуре в струе газа — воздуха или пара. При этом не происходит строго отделение углеводородов от смол соответственно температурам их кипения. Поток газа способствует уносу части смолистых соединений с парами углеводородов, а действие высокой температуры, особенно при продувке воздухом, обусловливает окисление углеводородов и новообразование смолистых веществ во время анализа.
Испарение топлива происходит в основном при неработающем двигателе.
Испарение топлива в дизелях начинается сразу после era впрыска в камеру сгорания и продолжается до сгорания последних порций топлива. На приготовление горючей смеси в дизеле отводится в 10 раз меньше времени, чем в карбюраторном двигателе, и в то же время в дизеле удается использовать более тяжелые топлива с худшей испаряемостью. Это объясняется тем, что в дизелях хорошо распыленное топливо впрыскивается в воздух, нагретый за счет сжатия до 500 — 600 С. Такие условия обеспечивают интенсивный прогрев и испарение капель топлива.
Испарение топлива начинается сразу же по выходе его из форсунки. В этот момент на скорость испарения в небольшой степени влияет температура поступающего к корню факела воздуха.
Испарение топлива в ДВС происходит с одновременным теплообменом.
Испарение топлива в омывающий поток газа происходит с поверхности пленки в результате нагрева ее от стенки камеры сгорания. Чтобы испарение происходило достаточно быстро, но без термического разложения топлива, температура стенки должна поддерживаться в пределах 200 — 400 С.
Влияние скорости воз. |
Испарение топлива начинается сразу же по выходе его из форсунки.
После испарения топлива остаются смолы, которые определяются взвешиванием на аналитических весах. Содержание смол в реактивных топлнвах прямой гонки типа Т-1 не должно превышать Ш мг на 100 мл топлива.
На испарение топлива затрачивается тепло, в результате чего температура топлива и воздуха при испарении понижается. Степень охлаждения пропорциональна количеству испарившегося топлива, его скрытой теплоте испарения, обратно пропорциональна количеству воздуха, приходящегося на единицу веса топлива и теплоемкости топлива.
Система непосредственного впрыска топлива. |
На испарение топлива при непосредственном впрыске отводится меньшее время. Факторами, ускоряющими испарение, являются усиленное вихревое движение воздуха, высокая температура внутри цилиндра и низкое давление в такте всасывания. В такте сжатия вихревые движения затухают, но температура к моменту воспламенения повышается и может достигать 400 С.
Зависимость давления насыщенных паров бензина от температуры.| Суммарное количество оборотов. |
Испарение — бензин
Схема устройства простейшего карбюратора. |
Испарение бензина начинается с момента выхода его из каналов карбюратора в поток воздуха в диффузоре. Под действием кинетической энергии движущегося воздуха вытекающая струя бензина дробится на отдельные кашш. Мелкие капли успевают испариться в смесительной камере карбюратора. Более крупные капли увлекаются потоком воздуха и испаряются при движении смеси по впускному тракту и в цилиндрах двигателя. Наиболее крупные капли топлива оседают на стенках смесительной камеры и впускного трубопровода, образуя жидкую топливную пленку. Паровоздушный поток увлекает пленку по стенкам впускного трубопровода в направлении камер сгорания.
Испаряемость топлива и охлаждение металлических деталей карбюратора. |
Испарение бензина во впускной системе двигателя сопровождается понижением температуры топливно-воздушнои смеси вследствие того, что тепло, необходимое для испарения бензина ( теплота испарения), отнимается от воздуха, в котором происходит испарение, и от металлических деталей впускной системы. Отмечено, например, что при температуре окружающего воздуха 7 5 С температура дроссельной заслонки через две минуты после пуска двигателя снижается до — 14 С.
Испарение бензина начинается с момента выхода его из распылителя и продолжается в потоке воздуха, движущемся с большой скоростью. При этом часть бензина испаряется во впускном трубопроводе, а часть — в цилиндре двигателя.
Испаряемость топлива и. |
Испарение бензина во впускной системе двигателя сопровождается понижением температуры топливо-воздушной смеси вследствие того, что тепло, необходимое для испарения бензина ( теплота испарения), отнимается от воздуха, в котором происходит испарение, и. Отмечено, например, что при температуре окружающего воздуха 7 5 С температура дроссельной заслонки через-2 мин после пуска двигателя снижается до — 14 С.
Испарение бензина происходит при всех операциях ( заполнение, хранение, заправка), величина потерь зависит от организации работ, технической оснащенности и состояния оборудования.
Испарение бензина тесно связано с упругостью паров. Чем меньше упругость паров, тем медленнее испаряется бензин, и наоборот. Вместе с этим в стандарте на бензин ограничивается наиболее допустимая упругость паров, которая не должна превышать 500 мм ртутного столба.
Типовая характеристика выпаривания бензина из масла при непрерывной работе двигателя в течение 1 ч на стенде. |
Испарение бензина из маслосистемы самолета в полете с маслобаками, имеющими циркуляционные колодцы, происходит еще быстрее.
Испарение бензина является фактором, который необходимо учитывать при организации перевозочного процесса. Помимо того, что насыщение парами бензина пространства цистерны или резервуаров опасно в пожарном отношении и в отношении взрывов, испарение бензина меняет его качественный состав. Кроме того, испарение бензина является причиной потерь его при перевозках.
Испарение бензина происходит тем интенсивнее, чем выше температура среды. Поэтому при хранении и перевозке бензина прибегают к ряду мероприятий, уменьшающих степень испаряемости при повышении окружающей температуры. В целях уменьшения испарения бензиновые цистерны и резервуары для хранения бензина окрашивают в светлый цвет.
Испарение бензина во впускном трубопроводе сопровождается разделением бензина на фракции. В процессе впуска испаряются в основном низкокипящие фракции. Они, образуя паровоздушную смесь, поступают в цилиндр. Высококипящие фракции оседают на стенке впускного трубопровода в виде жидкой пленки, которая, постепенно испаряясь, движется по впускному тракту. При применении высокооктановых бензинов в результате такого протекания процесса смесеобразования во время впуска ( особенно на неустановившихся режимах) в цилиндр прежде всего поступают низкокипящие фракции со сравнительно меньшим октановым числом. Это может привести к возникновению детонации. Наибольшее влияние на распределение по цилиндрам бензина, имеющего различную детонационную стойкость, оказывает этилирование бензина, что связано с неравномерностью распределения тетраэтнлсшшца при выкипании отдельных фракции.
Испарение бензина во впускной системе двигателя сопровождается понижением температуры топливо-воздушной смеси вследствие того, что тепло, необходимое для испарения бензина ( теплота испарения), отнимается от воздуха, в котором происходит испарение, и от металлических деталей впускной системы. Отмечено, например, что при температуре окружающего воздуха 7 5 С температура дроссельной заслонки через 2 мин после пуска двигателя снижается до — 14 С.
Испаряемость — топливо
Схема установки для определения фракционного состава топлива. |
Испаряемость топлива является одной из главных эксплуатационных характеристик, так как она влияет на процессы смесеобразования и горения, потери топлива при высотных полетах, возможность образования паровых пробок в топливопроводах. Испаряемостью жидкости называется способность ее переходить в газообразное состояние. О ней судят главным образом по двум показателям: фракционному составу и давлению насыщенных паров.
Испаряемость топлива при этом ухудшается. При использовании в двигателе топлива утяжеленного фракционного состава ( вместо обычного) смесеобразование ухудшается.
Испаряемость топлива также имеет большое значение в проблеме потребления горючего и получения максимальной мощности двигателя.
Испаряемость топлива определяется фракционным составом. В отличие от бензинов фракционный состав дизельных топлив регламентируется лишь температурами выкипания 50 и 96 % топлива. Это объясняется тем, что между температурой выкипания 10 % дизельного топлива и работой дизелей однозначной связи не установлено. При облегчении топлива ухудшается пуск дизелей, так как легкие фракции имеют худшую по сравнению с тяжелыми фракциями самовоспламеняемость. Поэтому пусковые свойства дизельных топлив для автомобилей в некоторой степени определяет температура выкипания 50 % топлива. Температура выкипания 96 % топлива регламентирует содержание в топливе наиболее тяжелых фракций, увеличение которых ухудшает смесеобразование, снижает экономичность, повышает нагарообразование и дымность отработавших газов.
Испаряемость топлив в значительной мере зависит от давления насыщенных паров и, следовательно, от фракционного состава топлива.
Испаряемость топлив определяет главным образом эффективность процессов смесеобразования в двигателе и потери топлив при производстве, транспортировании, хранении и применении.
Пределы воспламенения в воздухе некоторых горючих веществ при20 С. |
Испаряемость топлив может регулироваться фракционным и компонентным составом, в основном при производстве топлив.
Испаряемость топлива определяется фракционным составом. В отличие от бензинов фракционный состав дизельных топлив регламентируется лишь температурами выкипания 50 и 96 % топлива. Это объясняется тем, что между температурой выкипания 10 % дизельного топлива и работой дизелей однозначной связи не установлено. При облегчении топлива ухудшается пуск дизелей, так как легкие фракции имеют худшую по сравнению с тяжелыми фракциями самовоспламеняемость. Поэтому пусковые свойства дизельных топлив для автомобилей в некоторой степени определяет температура выкипания 50 % топлива. Температура выкипания 96 % топлива регламентирует содержание в топливе наиболее тяжелых фракций, увеличение которых ухудшает смесеобразование, снижает экономичность, повышает нагарообразование и дымность отработавших газов.
Кривые фракционной разгонки различных топлив. |
Испаряемость топлива, зависящая от его фракционного состава, упругости паров, поверхностного натяжения и теплоты парообразования, является одной из основных характеристик топлива. Ее определяют в специальном приборе путем нагревания топлива и последовательного отбора фракций, выкипающих в определенных интервалах температур.
Испаряемость топлива следует учитывать и по другой причине.
Испаряемость топлив в дизельных двигателях имеет меньшее эксплуатационное значение, чем испаряемость бензинов в карбюраторных двигателях. Это связано, в первую очередь, с тем обстоятельством, что в дизельном двигателе смесеобразование происходит при очень высокой температуре в конце такта сжатия воздуха. На испарение топлива в быстроходном дизеле отводится 0 6 — 2 0 мс. Чтобы топливо за это время испарилось, размер капель его должен быть в пределах 10 — 20 мкм; с уменьшением диаметра капель возрастает скорость их нагрева. Полнота испарения топлива в двигателе зависит от температуры, вихревого движения воздуха в камере сгорания, качества распиливания и испаряемости топлива.
Испаряемость топлива для судовых газотурбинных установок имеет такое же важное значение, как и для других двигателей внутреннего сгорания. От нее во многом зависят качество смесеобразования, полнота сгорания топлива а также форма температурного поля в камере сгорания и связанные с этим явления.
Фракционный состав — бензин
Фракционный состав бензина каталитического крекинга мало влияет на приемистость к ТЭС. На всем протяжении кривых разрыв между октановым числом этилированного и чистого бензина примерно одинаков.
Фракционный состав бензинов парофазного и смешаннофазного крекинга более или менее одинаков.
Утяжеляется фракционный состав бензинов и как следствие этого уменьшается степень испарения бензина, ухудшаются его пусковые свойства и условия сгорания в двигателе.
Стабилизация фракционного состава бензина заключается в ректификации его. В результате ректификации в бензине остаются углеводороды, начиная от бутана и выше; содержание бутана снижают примерно до 30 — 33 % общего веса бензина; пропан и более легкие углеводороды удаляют возможно полнее.
Стабилизация фракционного состава бензина заключается в ректификации бензина. В результате ректификации в бензине остаются углеводороды, начиная от бутана и выше; содержание бутана снижают примерно до 30 — 33 % общего веса бензина; пропан и более легкие углеводороды удаляют возможно полнее.
Влияние конструкции автомобиля на продолжительность прогрева. |
Кроме фракционного состава бензина, на время прогрева двигателя существенно влияют его конструктивные особенности.
Анализ фракционного состава бензинов, приведенных в табл. 26, показывает, что низкооктановые бензины ( А-66, А-72, А-76) имеют более высокие температуры выкипания 10 % и, особенно, 50 % бензина, что, естественно, влияет и на их октановые характеристики.
Для фракционного состава бензинов наиболее характерны температуры перегонки 10; 50 и 90 % топлива, а также температуры начала и конца его перегонки.
Значительно легче фракционный состав бензина. Таким образом, комбинированный процесс имеет преимущества в случае, если на предприятии есть потребность в изобутане для процесса алкилнрования и нет необходимых легкокипящих углеводородов для компаундирования бензина риформинга. Советском Союзе разработана другая модификация комбинированного процесса гидрокрекинг-риформинг. Из схемы процесса ( рис. 6.14) следует, что блоки гидрокрекинга и — риформинга работают автономно. Каждый из этих блоков имеет самостоятельную систему циркуляции ВСГ. Такое усложнение процесса должно вызвать повышение капитальных и эксплуатационных затрат. Однако процесс имеет и свои достоинства. Так, количество образующихся при гидрокрекинге бензиновых фракций изопарафи-нов намного превышает количество н-парафннов. Например, отношение изобутан: н-бутан л 4: 1, а изопентан: н-пентан 10: 1 , что значительно превышает равновесные отношения ( см. гл.
Влияние теплового режима двигателя на испарение бензина. |
При утяжелении фракционного состава бензина ( если тепловой режим двигателя неизменен) испарение бензина ухудшается.
Если изменение фракционного состава бензинов при добавлении к ним компонентов определяется только температурой кипения компонента и не зависит от его химической природы, то изменения других показателей качества бензинов обусловливаются именно химической природой компонента.
Вторая особенность фракционного состава бензинов капиталистических стран заключается в том, что они имеют повышенную температуру конца — кипения. Это связано, очевидно, с широким использованием бензинов каталитического риформинга, высококипящие фракции которых имеют хорошие антидетонационные свойства.
В отношении фракционного состава бензинов рассматриваемых нефтей могут быть два случая.