Что называется напряжением и электрическим током. Что называется напряжением

Физическое напряжение

Физическое напряжение — напряжение организма, вызванное повышенной нагрузкой на двигательный аппарат человека.

Влияние физического напряжения на здоровье медработников было показано непрерывными наблюдениями за их рабочим днем. Наблюдаемые бельгийские медсестры проводили 10 % рабочего времени в согнутом положении.

ГО физического напряжения, допускается с согласия водителей совмещение ЖМИ обязанностей грузчика с оплатой этой работы по сдельным расценкам, установленным для грузчиков.

Кроме физического напряжения, на величину теплоотдачи организма влияют температура, скорость движения и относительная влажность воздуха.

Помимо физического напряжения на величину теплоотдачи организма влияют метеорологические условия воздушной среды — температура, относительная влажность, подвижность воздуха.

Одышка при умеренном физическом напряжении или привычной работе, боли в груди, кашель сухой или с мокротой; явления эмфиземы, особенно в нижних отделах легких, ограничение экскурсий грудной клетки и подвижности легочных краев; учащение дыхания удлинение времени восстановления при дозированной нагрузке, понижение жизненной емкости легких, повышение минутной ле-вентиляции.

Одышка при умеренном физическом напряжении ли привычной работе, боли в груди, кашель сухой или с мокротой; явления эмфиземы, особенно в нижних отделах легких, ограничение экскурсий грудной клетки и подвижности легочных краев; учащение дыхания в покое, удли — ение времени восстановления при дозированной нагрузке, небольшое понижение жизненной емкости легких, повышение минутной легочной вентиляции.

Одышка при умеренном физическом напряжении или привычной работе, боли в груди, кашель сухой или с мокротой; явления эмфиземы, особенно в нижних отделах легких, ограничение экскурсий грудной клетки и подвижности легочных краев; учащение дыхания в покое, удлинение времени восстановления при дозированной нагрузке, небольшое понижение жизненной емкости легких, повышение минутной легочной вентиляции.

Одышка при умеренном физическом напряжении или привычной работе, боли в груди, кашель сухой или с мокротой.

Работа, требующая физического напряжения, имеет непосредственное отношение к изменению артериального давления. При динамической нагрузке с участием больших мышечных масс кровоснабжение и потребности организма сбалансированы.

Величина и интенсивность физического напряжения определяют количество энергии, затрачиваемой организмом на выполнение работы.

По мере нарастания физического напряжения вы начинаете терять концентрацию и ваша способность к эффективному общению снижается. Кроме того, как уже объяснялось ранее, чрезмерное напряжения мышц лица, шеи и плеч меняет звучание вашего голоса. Напряженный мужчина представляется собеседнику старым, раздражительным и твердолобым, а напряженная женщина — эмоциональной и непредсказуемой.

Схема гуморалыю-гормональпых взаимоотношений при длительной физической нагрузке.

Встречающийся обычно при длительных физических напряжениях у менее тренированных ( менее квалифицированных) спортсменов неонтимальный вариант ( рис. 20, Б) отличается высоким исходным ( фоновым или предстартовым) уровнем катехоламинов ( в первую очередь адреналина) и кортикостероидов. Резервы при этом большей частью недостаточны. Торможение, а иногда и истощение симпатоадреналовой и гиноталамо-гипофизарно-надпочечниковой систем наступает у них значительно быстрее, чем у спортсменов, у которых течение гумораль-но-гормональных процессов при длительной физической нагрузке протекает по оптимальному варианту.

При ручной погрузке лесоматериалов физическое напряжение и рабочие нагрузки являются чрезвычайно высокими. Как при ручной, так и механизированной погрузке имеется опасность получения повреждения от движущегося бревна или механизма. Опасности механизированной погрузки включают шум, пыль, вибрацию, высокие психологические нагрузки, повторяющееся напряжение, вдвинутые или падающие объекты и гидравлические жидкости.

Плоское напряженное состояние

Рассмотрим
более подробно плоское напряженное
состояние. Выделим из тонкой пластинки
толщиной t бесконечно
малый элемент, по боковым граням которого
действуют нормальные и касательные
напряжения (рис. 2, а). Принимаем,
что напряжения по толщине пластинки
распределены равномерно, поэтому
конкретный размер t не
влияет на дальнейший анализ. Будем
смотреть на элемент с острия оси z,
а напряжения на боковых гранях элемента
считать положительными (рис. 2, б).

Рис.
2. Плоское напряженное состояние

Согласно закону
парности касательных напряжений
 ,
т. е. касательные напряжения на
взаимно-перпендикулярных площадках
рав­ны по величине и направлены так,
что стремятся вращать элемент в
противоположных направлениях.

Главные
площадки (рис. 3) составляют угол a с
исходными площадками, величину которого
определяют из выражения

Рис.
3. Главные площадки и главные напряжения

Главные
напряжения, обозначаемые как и,
вычисляют по формуле

.

Экстремальные
касательные напряжения
равны полуразности главных
напряжений и действуют на площадках,
наклоненных к главным площадкам под
углом 45°

Деформации
бесконечно малого элемента при плоском
напряженном состоянии заключаются в
изменении линейных размеров элемента
и в изменении формы элемента. Если в
общем случае на гранях элемента действуют
нормальные и касательные напряжения,
то в точке тела возникают относительные
линейные деформации

и
угловая деформация (относительный
сдвиг
)
в виде угла сдвига (рис.
4,б).

Рис.4.
Плоское напряженное состояние: 
а –
напряжения; б –
деформации

Между
относительными линейными деформациями
и напряжениями в точке упругого тела
существуют зависимости в виде закона
Гука:

Здесь –
модуль продольной упругости (модуль
упругости первого рода);–
коэффициент Пуассона.

Частным
случаем плоского напряженного состояния
является такой, при котором на
взаимно-перпендикулярных площадках
действуют только касательные напряжения
(рис. 5).

Рис.
5. Напряжения и деформации при чистом
сдвиге

Такой
случай называется чистым
сдвигом
,
а исходные площадки называются площадками
чистого сдвига. Главные площадки
оказываются наклоненными к площадкам
чистого сдвига под углом 45°, а главные
напряжения численно равны касательным
напряжениям, причем одно из главных
напряжений – растягивающее, а другое
– сжимающее. Согласно принятому правилу
обозначения главных напряжений ;

Деформации
бесконечно малого элемента при чистом
сдвиге заключаются в искажении прямых
углов на величину ,
которая называетсяуглом
сдвига 
(рис.
4 и 5).

Между
углом сдвига и касательными напряжениями
существует пропорциональная зависимость,
называемая законом
Гука при чистом сдвиге

,

где
коэффициент пропорциональности G – модуль
сдвига
 (модуль
упругости второго рода), измеряемый в
тех же единицах, что и напряжения, МПа,
кН/см2.

Три
характеристики упругих свойств
изотропного материала оказываются
связанными между собой зависимостью,
которую наиболее часто записывают в
следующей форме:

MYsopromat.ru Напряжения

Мерой интенсивности внутренних сил, распределенных по сечениям, служат напряжения – усилия, приходящиеся на единицу площади сечения. Выделим в окрестности точки B малую площадку ΔF (рис. 3.1). Пусть ΔR — равнодействующая внутренних сил, действующих на эту площадку. Тогда среднее значение внутренних сил, приходящихся на единицу площади ΔF рассматриваемой площадки, будет равно:

(3.1)

Рис. 3.1. Среднее напряжение на площадке

Величина pm называется средним напряжением. Она характеризует среднюю интенсивность внутренних сил. Уменьшая размеры площади, в пределе получим

(3.2)

Величина p называется истинным напряжением или просто напряжением в данной точке данного сечения.

Единица напряжения – паскаль, 1 Па = 1 Н/м2. Так как реальные значения напряжений будут выражаться очень большими числами, то следует применять кратные значения единиц, например МПа (мегапаскаль) 1 МПа= 106 Н/м2.

Напряжения, как и силы, являются векторными величинами. В каждой точке сечения тела полное напряжение p можно разложить на две составляющие (рис. 3.2):

1) составляющую, нормальную к плоскости сечения. Эта составляющая называется нормальным напряжением и обозначается σ;

2) составляющую, лежащую(в плоскости сечения. Эта составляющая обозначается τ и называется касательным напряжением. Касательное напряжение в зависимости от действующих сил может иметь любое направление в плоскости сечения. Для удобства τ представляют в виде двух составляющих по направлению координатных осей. Принятые обозначения напряжений показаны ни рис. 3.2

У нормального напряжения ставится индекс, указывающий какой координатной оси параллельно данное напряжение. Растягивающее нормальное напряжение считается положительным, сжимающее – отрицательным. Обозначения касательных напряжений имеют два индекса: первый из них указывает, какой оси параллельна нормаль к площадке действия данного напряжения, а второй – какой оси параллельно само напряжение. Разложение полного напряжения на нормальное и касательное имеет определенный физический смысл. Нормальное напряжение возникает, когда частицы материала стремятся отдалиться друг от друга или, наоборот, сблизиться. Касательные напряжения связаны со сдвигом частиц материала по плоскости сечения.

Рис. 3.2. Разложение вектора полного напряжения

Если мысленно вырезать вокруг какой-нибудь точки тела элемент в виде бесконечно малого кубика, то по его граням в общем случае будут действовать напряжения, представленные на рис. 3.3. Совокупность напряжений на всех элементарных площадках, которые можно провести через какую-либо точку тела называется напряженным состоянием в данной точке.

Вычислим сумму моментов всех элементарных сил, действующих на элемент (рис.3.3), относительно координатных осей, так, например, для оси x с учетом равновесия элемента, имеем:

(3.3)

Повторяя указанные действия для других осей, получим закон парности касательных напряжений:

,

(3.4)

который формулируется следующим образом: составляющие касательных напряжений на двух взаимно перпендикулярных площадках, перпендикулярные общему ребру, равны по величине и противоположны по знаку, то есть либо обе направлены к ребру либо обе направлены от ребра.

Рис. 3.3. Система напряжений в точке

ЭЛЕКТРИЧЕСКОЕ НАПРЯЖЕНИЕ

За единицу электрического напряжения, электродвижущей силы (ЭДС) принят вольт (в честь итальянского физика А. Вольта). В формулах напряжение обозначают латинской буквой U (читается «у»), а саму единицу напряжения — вольт — буквой В. Например, пишут : U = 4,5 В; U = 220 В. Единица вольт характеризует напряжение на концах проводника, участке электрической цепи или полюсах источника тока. Напряжение 1 В — это такая электрическая величина, которая в проводнике сопротивлением 1 Ом создает ток, равный 1 А.

Рис. 51. Вольтметр подключают параллельно нагрузке или источнику, тока, питающего электрическую цепь

Батарея 3336Л, предназначенная для плоского карманного электрического фонаря, как ты уже знаешь, состоит из трех элементов, соединенных последовательно. На этикетке батареи можно прочитать, что ее напряжение 4,5 В. Значит, напряжение каждого из элементов батареи 1,5 В. Напряжение батареи «Крона» 9 В, а напряжение электроосветительной сети может быть 127 или 220 В.

Напряжение измеряют вольтметром, подключая прибор одноименными зажимами к полюсам источника тока или параллельно участку цепи, резистору или другой нагрузке, на которой необходимо измерить действующее на ней напряжение (рис. 51). На схемах вольтметр обозначают латинской буквой U в кружке, а рядом — PU. Для оценки напряжения применяют и более крупную единицу — киловольт (пишут кВ), соответствующую 1000 В, а также более мелкие единицы — милливольт (пишут мВ), равный 0,001 В, и микровольт (пишут мкВ), равный 0,001 мВ. Эти напряжения измеряют соответственно киловольтметрами, милливольтметрами и микровольтметрами. Такие приборы, как и вольтметры, подключают параллельно источникам тока или участкам цепей, на которых надо измерить напряжение.

Выясним теперь, в чем разница понятий «напряжение» и «электродвижущая сила».

Электродвижущей силой называют напряжение, действующее между полюсами источника тока, пока к нему не подключена внешняя цепь — нагрузка, например лампочка накаливания или резистор. Как только будет подключена внешняя цепь и в ней возникнет ток, напряжение между полюсами источника тока станет меньше. Так, например, новый не бывший еще в употреблении гальванический элемент имеет ЭДС не менее 1,5 В. При подключении к нему нагрузки напряжение на его полюсах становится равным примерно 1,3-1,4 В. По мере расходования энергии элемента на питание внешней цепи его напряжение постепенно уменьшается. Элемент считается разрядившимся и, следовательно, негодным для дальнейшего применения, когда напряжение снижается до 0,7 В, хотя, если отключить внешнюю цепь, его ЭДС будет больше этого напряжения.

А как оценивают переменное напряжение? Когда говорят о переменном напряжении, например о напряжении электроосветительной сети, то имеют в виду его действующее значение, составляющее примерно, как и действующее значение переменного тока, 0,7 амплитудного значения напряжения.

Как проверить напряжение.

Для измерения напряжения электрического тока  служат следующие измерительные приборы:

  1. Вольтметр, хорошо знакомый всем с уроков физики. В повседневной жизни он не используется.
  2. Мультиметр, обладающий многочисленными функциями, в том числе и измерения величины тока и напряжения. Рекомендую почитать нашу статью: «Как пользоваться мультиметром».
  3. Тестер— то же самое что и мультиметр, только механической стрелочной конструкции.

Внимание, при измерении источников постоянного тока (какие к ним относят) необходимо соблюдать полярность

Как измерить  напряжение в розетке, в патроне лампы и т. п.:

 Проверяем надежность изоляции измерительного прибора, особенно обращаем внимание на щупы, которые обязательно необходимо подключать только в соответствующие  проводимым операциям гнезда.

Устанавливаем переключатель пределов измерений на приборе в положение измерения переменного напряжения до 250 Вольт (400- для измерений линейного напряжения).

Вставляем  щупы  в розетку или подносим к контактам на лампе, светильнике или любом другом электроприборе.
Снимаем показания.

Будьте осторожны- работа проводится под напряжением- не касайтесь руками не изолированных контактов и проводов, находящихся под напряжением.

Как измерить напряжение аккумулятора, батарейки и блока питания.

Все источники постоянного тока необходимо измерять с соблюдением полярности- черный щуп ставим на минусовую клемму, а красный — на плюсовую клемму.

А так все аналогично проводятся как и при проведении вышеописанных измерений в розетке, но только тестер или мультиметр необходимо переключить в режим измерения постоянного тока с пределом выше указанного на АКБ, батарейке или блоке питания.

← Предыдущая страница
Следующая страница →

Как возникает напряжение

Все вещества состоят из атомов, представляющих собой положительно заряженное ядро, вокруг которого с большой скоростью кружатся более мелкие отрицательные электроны. В общем случае атомы нейтральны, так как количество электронов совпадает с числом протонов в ядре.

Однако если некоторое количество электронов отнять из атомов, то они будут стремиться притянуть такое же их количество, формируя вокруг себя плюсовое поле. Если же добавить электронов, то возникнет их избыток, и отрицательное поле. Формируются потенциалы – положительный и отрицательный.

При их взаимодействии возникнет взаимное притяжение.

Если соединить потенциалы с различными зарядами проводников, то возникнет электрический ток – направленное движение носителей заряда, стремящееся устранить разницу потенциалов. Для перемещения по проводнику зарядов силы электрического поля совершают работу, которая и характеризуется понятием электрического напряжения.

Физика8 класс

§ 39. Электрическое напряжение

Мы знаем, что электрический ток — это упорядоченное движение заряженных частиц, которое создаётся электрическим полем, а оно при этом совершает работу. Работу сил электрического поля, создающего электрический ток, называют работой тока. В процессе такой работы энергия электрического поля превращается в другой вид энергии — механическую, внутреннюю и др.

От чего же зависит работа тока? Можно с уверенностью сказать, что она зависит от силы тока, т. е. от электрического заряда, протекающего по цепи в 1 с. В этом мы убедились, знакомясь с различными действиями тока (см. § 35). Например, пропуская ток по железной или никелиновой проволоке, мы видели, что чем больше была сила тока, тем выше становилась температура проволоки, т. е. сильнее было тепловое действие тока.

Но не только от одной силы тока зависит работа тока. Она зависит ещё и от другой величины, которую называют электрическим напряжением или просто напряжением.

Напряжение — это физическая величина, характеризующая электрическое поле. Оно обозначается буквой U

Чтобы ознакомиться с этой очень важной физической величиной, обратимся к опыту

На рисунке 64 изображена электрическая цепь, в которую включена лампочка от карманного фонарика. Источником тока здесь служит батарейка. На рисунке 64, б показана другая цепь, в неё включена лампа, используемая для освещения помещений. Источником тока в этой цепи является городская осветительная сеть. Амперметры, включённые в указанные цепи, показывают одинаковую силу тока в обеих цепях. Однако лампа, включённая в городскую сеть, даёт гораздо больше света и тепла, чем лампочка от карманного фонаря. Объясняется это тем, что при одинаковой силе тока работа тока на этих участках цепи при перемещении электрического заряда, равного 1 Кл, различна. Эта работа тока и определяет новую физическую величину, называемую электрическим напряжением.

Рис. 64. Различное свечение ламп при одной и той же силе тока:
а — источник тока — батарейка; б — источник тока — городская сеть

Напряжение, которое создаёт батарейка, значительно меньше напряжения городской сети. Именно поэтому при одной и той же силе тока лампочка, включённая в цепь батарейки, даёт меньше света и тепла.

Напряжение показывает, какую работу совершает электрическое поле при перемещении единичного положительного заряда из одной точки в другую.

Зная работу тока А на данном участке цепи и весь электрический заряд q, прошедший по этому участку, можно определить напряжение U, т. е. работу тока при перемещении единичного электрического заряда:

U = A / q

Следовательно, напряжение равно отношению работы тока на данном участке к электрическому заряду, прошедшему по этому участку.

Из предыдущей формулы можно определить:

A = Uq, q = A / U.

Электрический ток подобен течению воды в реках и водопадах, т. е. течению воды с более высокого уровня на более низкий. Здесь электрический заряд (количество электричества) соответствует массе воды, протекающей через сечение реки, а напряжение — разности уровней, напору воды в реке. Работа, которую совершает вода, падая, например, с плотины, зависит от массы воды и высоты её падения. Работа тока зависит от электрического заряда, протекающего через сечение проводника, и от напряжения на этом проводнике. Чем больше разность уровней воды, тем большую работу совершает вода при своём падении; чем больше напряжение на участке цепи, тем больше работа тока. В озёрах и прудах уровень воды всюду одинаков, и там вода не течёт; если в электрической цепи нет напряжения, то в ней нет и электрического тока.

Вопросы

  1. Опишите опыт, который доказывает, что работа тока зависит не только от силы тока, но и от напряжения.
  2. Что такое электрическое напряжение?
  3. Как можно определить его через работу тока и электрический заряд?
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *