Тема лекции 17 Электрическое торможение асинхронных двигателей

Принцип работы рекуператора

У
нас есть приточно-вытяжная вентиляция.
Приточный воздух зимой очищается
воздушными фильтрами и нагревается
калориферами. Он попадает в помещение,
согревает его и разбавляет вредные
газы, пыль и прочие выделения. Затем он
попадает в вытяжную вентиляцию и
выбрасывается на улицу…  Отсюда
мысль… Почему бы нам не нагревать
холодный приточный воздух воздухом
выбрасываемым. Ведь мы по сути выбрасываем
деньги на ветер. 
Итак,
у нас есть выбрасываемый воздух с
температурой 21 С и приточный, который
до калорифера имеет температуру -10 С.
Мы устанавливаем, к примеру, рекуператор
с пластинчатым теплообменником. Чтобы
понять принцип действия рекуператора
с пластинчатым теплообменником
представьте себе квадрат, в котором
вытяжной воздух проходит снизу-вверх,
а приточный слева-направо. Причем эти
потоки не смешиваются друг с другом за
счет использования специальных
теплопроводящих пластин, разделяющих
эти два потока.

В
итоге выбрасываемый воздух отдает
приточному до 70% тепла и на выходе из
рекуператора имеет температуру 2-6 С, а
приточный воздух, в свою очередь, имеет
температуру на выходе из рекуператора
12-16 С. Следовательно калорифер будет
нагревать воздух не -10 С, а +12 С и это
позволит нам значительно сэкономить
на электро- или тепловой энергии,
затрачиваемой на обогрев приточного
воздуха.

Рекуперативное торможение

Классическое рекуперативное торможение возможно только при независимом или смешанном возбуждении, так как при последовательном не обеспечивается электрическая устойчивость тормоза. При подключении якорей ТМ непосредственно к КС ( рис. 62.66, а) рекуперируемый ток / ( Ет м — С / к С) / 2Я, где в 2Л входят Лт м, RK c на участке до приемника энергии рекуперации и J.

Рекуперативное торможение асинхронного двигателя возможно, если угловая скорость его оказывается выше синхронной. Этот способ торможения может быть осуществлен при управлении, например, двух — или многоскоростными двигателями в случае переключения обмоток статора работающего двигателя с меньшего числа полюсов на большее.

Рекуперативное торможение двигателей параллельного возбуждения выполняется в подъемных механизмах при спуске груза и при регулировании скорости вращения изменением тока возбуждения. В промышленных приводах возможности его использования обычно ограниченны.

Когда рекуперативное торможение прекратится, селективную рукоятку переводят в положение, соответствующее режиму тяги.

Применение рекуперативного торможения на спаренных электровозах производится по тем же правилам, что и для одиночной тяги.

Выключение рекуперативного торможения производят перемещением тормозной рукоятки в сторону 1 — й позиции. Когда ток рекуперации будет близким нулю, переводят главную рукоятку в нулевую позицию, а затем окончательно переводят тормозную рукоятку в нулевую позицию и выключают возбудитель. Далее по условиям ведения поезда с целью его остановки или регулирования скорости могут быть применены или автотормоза поезда, или вспомогательный тормоз локомотива.

Применение рекуперативного торможения на двух электровозах в составе допускается только при исправной радиосвязи на них.

Использование рекуперативного торможения также позволяет уменьшить расход электрической энергии. Тяговые двигатели параллельного возбуждения переходят в режим рекуперативного торможения автоматически при повышении скорости. Электродвигатели последовательного возбуждения не могут работать в режиме рекуперации, поэтому их переводят на независимое возбуждение от специального преобразователя.

Для рекуперативного торможения асинхронный двигатель переводится из двигательного в генераторный режим. Для этого необходимо, чтобы скорость вращения ротора стала выше синхронной. В многоскоростном двигателе перевод в генераторный режим происходит при увеличении числа пар полюсов для уменьшения скорости вращения. За время работы машины в генераторном режиме, пока скорость ротора сравняется с синхронной, часть кинетической энергии движущихся масс преобразуется в электрическую и возвращается в сеть, что является достоинством этого метода торможения. Недостаток состоит в том, что его нельзя применить при скорости вращения ротора меньше синхронной.

Процесс рекуперативного торможения происходит без подмагничивания дросселя насыщения, поскольку по его обмоткам 1ОДН и ЗОДН ток не протекает. При таких условиях обеспечивается значительная величина замедления.

Направление электромагнитных моментов в режимах.| Механические характеристики двигателей независимого и параллельного возбуждения.

Особенностью рекуперативного торможения является то, что двигатель становится генератором, работающим на сеть.

Характеристики рекуперативного торможения показаны на фиг.

Режим рекуперативного торможения при работе машины как асинхронного генератора выше синхронной скорости применяется главным образом в короткозамкнутых двигателях с переключением полюсов.

Применение рекуперативного торможения па некоторых горных участках позволяет на 15 — 20.6 снизить расход электроэнергии на тягу поездов. Безопасность движения при использовании электрического торможения возрастает благодаря повышению гибкости управления движением поезда на спусках, так как появляется возможность не применять воздушное торможение или увеличивать время зарядки автотормозов после его применения.

Режим — рекуперативное торможение

Режим рекуперативного торможения при работе машины как асинхронного генератора выше синхронной скорости применяется главным образом в короткозамкнутых двигателях с переключением полюсов.

Режим рекуперативного торможения двигателя последовательного возбуждения не может быть получен путем уменьшения момента на валу, так как при переходе через нулевое значение момента ток, а следовательно, и поток становятся равными нулю и двигатель идет вразнос.

В режиме рекуперативного торможения возможно повышение напряжения на генераторе на 20 % сверх номинального. Исполнение генератора закрытое с принудительной вентиляцией.

В режиме рекуперативного торможения необходимо своевременно и регулярно приводить в действие песочницы электровоза для предупреждения юза колесных пар, особенно в кривых, на переездах, при неблагоприятных метеорологических условиях, а также при реализации больших тормозных усилий. Наибольшая опасность юза возникает на последовательном и последовательно-параллельном соединениях.

В режиме рекуперативного торможения двигателя в системе Г — Д так же, как и в двигательном режиме, происходит трехкратное преобразование энергии. Но если в двигательном режиме энергия, потребляемая из сети, последовательно проходит через двигатель МГ, генератор Г и двигатель М и передается рабочему органу, то в режиме рекуперации поток энергии имеет обратное направление.

В режимах динамического и рекуперативного торможения / и М отрицательны.

Переходят на режим рекуперативного торможения при напряжении в контактной сети не выше 3800 В. Если в процессе рекуперативного торможения напряжение в контактной сети повысилось до 3900 В, то следует уменьшить ток возбуждения и при необходимости применить автотормоза.

Система обеспечивает режим рекуперативного торможения электродвигателя. Выделяемая энергия рассеивается в звене постоянного напряжения на тормозном резисторе, который подключается через транзистор, входящий в конструкцию инвертора. Резистор имеет внешнее подключение к преобразователю частоты.

Механические характеристики асинхронного двигателя в режиме рекуперативного торможения.

Механические характеристики режима рекуперативного торможения располагаются во втором квадранте и являются продолжением характеристик двигательного режима. На рис. 8.7, а дан примерный вид механических характеристик режима рекуперативного торможения асинхронного двигателя при тормозном спуске груза.

Перед переходом на режим рекуперативного торможения должны быть включены преобразователи, питающие обмотки возбуждения тяговых двигателей. При исправных преобразователях кнопка Возбудители на щитке 83 — 1 включена. От провода К98 через замкнутые контакты кнопок Высокая скорость мотор-вентиляторов и Возбудители напряжение подается на провод К.

Схема включения ДПТ СВ для режима рекуперативного торможения.

При этом осуществляется режим рекуперативного торможения с независимым возбуждением при неполном потоке возбуждения двигателя. Можно показать, что при указанном переключении переходу в режим рекуперативного торможения соответствует резкое возрастание модуля жесткости механических характеристик. Это объясняется уменьшением сопротивления цепи якоря ( гв пос 0) и отсутствием зависимости потока от тока якоря.

Зависимости количества рекуперируемой электроэнергии от числа свечей на крюке Л / ( а и глубины скважины L ( 6.

В настоящее время режим рекуперативного торможения в тиристор-ном электроприводе постоянного тока буровой лебедки используется мало. Это объясняется тем, что такой тип электропривода внедрен в основном на морских буровых установках с автономной системой электроснабжения. Соизмеримость мощности электростанции с мощностью электропривода и отсутствие достаточного количества мощных потребителей со стороны переменного тока делает невозможным применение торможения такого типа. Исключение составляет лишь буровая установка БУ-2500ЭП, где используется электропривод с рекуперативным торможением. На морских буровых установках для выполнения операций по торможению при спуске бурильной или обсадной колонн используется режим динамического торможения. В этом случае двигатель лебедки отключается от силового преобразователя и работает как генератор постоянного тока, нагруженный на тормозное сопротивление — так называемые сборки динамического торможения. Регулирование скорости двигателя, а следовательно, и скорости спуска осуществляется за счет управления возбуждением двигателя.

1. Основные сведения

Электрическое
торможение применяют только в
электроприводах судовых грузоподъемных
механизмов, с целью «сброса» скорости
перед срабатыванием основного тормоза.
Тем самым облегчается работа основного
тормоза, а именно: уменьшаются износ
тормозных колодок и их нагрев.

Кроме
того, электрическое торможение ограничено
применяют в некоторых сиcтемах
судовой электроавтоматики, например,
авторулевых типа АТР, АИСТ и др.

Различают
5 видов электрического торможения
асинхронных двигателей:

  1. динамическое;

  2. рекуперативное;

  3. торможение
    противовключением при активном
    статическом моменте;

  4. торможение
    противовключением при реактивном
    статическом моменте.

  5. однофазное.

Из
всех видов торможения на судах чаще
всего применяется рекуперативное (в
электроприводах грузоподъемных
механизмов)

Что такое рекуперация тепла

Рекуперация тепла или обратное получение тепла — это процесс теплообмена, при котором тепло забирается от вытягиваемого выбрасываемого воздуха и передается свежему нагнетаемому воздуху, который нагревается. Процесс проходит в рекуперационном теплообменнике таким образом, что выбрасываемый и свежий воздух абсолютно отделены друг от друга, чтобы не произошло их смешивание.

В охлаждаемых помещениях можно использовать рекуперационные теплообменники также обратным способом, то есть для рекуперации холода. При этом подводимому воздуху передается холод от отводимого воздуха.

Важной характеристикой рекуператоров является Коэффициент эффективности рекуперации. Коэффициент эффективности рекуперации тепла выражает отношение между максимально возможным полученным теплом и теплом, полученным в действительности

Теоретически эффективность может меняться в пределах от 30 до 90 %. Эта характеристика зависит от стоимости, производителя и типа рекуператора

Коэффициент эффективности рекуперации тепла выражает отношение между максимально возможным полученным теплом и теплом, полученным в действительности. Теоретически эффективность может меняться в пределах от 30 до 90 %. Эта характеристика зависит от стоимости, производителя и типа рекуператора.

Рекуперативное торможение что это и когда будет наших авто

Рекуперативное торможение — что это такое и как работает?

Друзья, вы наверняка замечали, что в последние годы тема всевозможных возобновляемых и экологически чистых источников энергии муссируется очень активно.

В связи с этим хотелось бы поговорить о системе, которая просто таки творит чудеса — система рекуперативного торможения.

Во первых хочется сказать, эта новомодная система добралась все-таки и до любимых нами легковушек. Теперь уже практический каждый автопроизводитель имеет в своём арсенале по парочке моделей с гибридной силовой установкой, а то и вообще электромобиль.

Рекуперативное торможение — источник энергии

В чём же суть данной технологии? Оказывается, что во время движения наши с Вами автомобили не только поглощают энергию, съедая топливо, но и выделяют её.

Происходит это, как правило, во время торможения, когда масса кинетической энергии улетучивается в виде тепла от тормозных механизмов в атмосферу. «Зачем же нам греть воздух, если можно использовать её в других целях», — как-то раз задумались инженеры.

Результатом их трудов и стала система рекуперативного торможения, то есть такая, которая возвращает часть выделяющейся энергии обратно, в организм автомобиля, где потом используется вновь, а это значит, что мы экономим.

Проще всего такой фокус можно реализовать на гибридных машинах и электромобилях. Почему? Ответ будет дальше.

Кстати, автомобильный транспорт не единственный, где можно встретить рекуперационные системы. Довольно активно и давно они используется на железной дороге у электровозов, а также на городском электротранспорте – трамваях и метро.

Как сохранить энергию торможения?

С сутью рекуперации мы, кажется, разобрались, теперь остаётся выяснить, как она реализована на практике. Есть несколько способов повернуть энергию, выделяющуюся при торможении, в нужное русло. Мне известны только два:

  • электрический;
  • механический.

Электрический метод

Электрическое рекуперативное торможение, с технологической точки зрения можно назвать самым доступным, и именно он наиболее точно подходит под определение этой системе.

Система рекуперативного торможения

Электрический метод актуален для автомобилей с гибридными моторами (ДВС + электропривод) или для электромобилей.

Главную роль тут играют электродвигатели, которые благодаря своим свойствам, могут не только крутить колёса, но и крутиться сами под воздействием внешних сил, превращаясь в генераторы.

В момент рекуперативного торможения, электромотор переключается в генераторный режим и создаёт дополнительное останавливающее усилие на осях. В этом случае он уже не потребляет энергию аккумулятора, а наоборот, подзаряжает его, и так повторяется каждый раз, когда вы нажимаете на тормоз.

Таким образом, по подсчётам автопроизводителей, подобная система рекуперации на гибридном авто экономит до 30% запасов топлива.

Необходимо отметить, что в зависимости от скорости машины, электроника сама выбирает как ей лучше оттормаживаться – с помощью электродвигателя или традиционными методами.

Механический способ

Механическое рекуперативное торможение. По сути, это не система рекуперативного торможения, а система рекуперации кинетической энергии, так как она не способствует тому, чтобы автомобиль остановился, а просто накапливает часть энергии, выделяющейся во время снижения скорости.

В данном методе в качестве ключевого элемента используется маховик, который раскручивается во время торможения и затем отдаёт эту кинетическую энергию по мере дальнейшего движения авто.

Вращается маховик в вакуумной камере, а при торможении автомобиля раскручивается до 60000 об/мин. Конструкция такова, что она сохраняет энергию во вращательном маховике до 600 кДж, а при отдаче выдает мощность до 60 кВт, что составляет 80 л.с.

Такая система, получившая название KERS, несколько лет назад эксплуатировалась на гоночных машинах Формулы-1, где позволяла кратковременно добавить двигателю внутреннего сгорания ещё несколько десятков лошадиных сил.

В гражданской технике рекуперативное торможение пока является экзотикой и серийно не устанавливается.

Система KERS — рекуперация кинетической энергии (Kinetic Energy Recovery Systems)

Таким образом, наши дорогие читатели, мы видим, что игры с кинетической энергией, выделяющейся при торможении, могут давать вполне ощутимые результаты в виде экономии топливных ресурсов.

Но, справедливости ради, нужно заметить, что все эти системы довольно дорогое удовольствие, которое пока что очень осторожно становится массовым продуктом

На этом всё, спасибо за внимание и до новых встреч!

Рекуперация и дать, и взять журнал За рулем

16 февраля 2011 годаЕще до появления легковых гибридов рекуперативное торможение широко применяли в многотонной колесной и рельсовой технике, работающей на электрической тяге. Например, троллейбусы, трамваи, электропоезда передают вырабатываемое при торможении в контактную сеть электричество, которое потом можно повторно использовать.

Еще до появления легковых гибридов рекуперативное торможение широко применяли в многотонной колесной и рельсовой технике, работающей на электрической тяге. Например, троллейбусы, трамваи, электропоезда передают вырабатываемое при торможении в контактную сеть электричество, которое потом можно повторно использовать.

Термин «рекуперация» произошел от латинского recuperatio (обратное получение) и означает возвращение некоего количества вещества или энергии для последующего использования в том же технологическом процессе.

Например, существует рекуперация тепла в системах вентиляции, когда удаляемый из помещения воздух подогревает поток, нагнетаемый внутрь. Или рекуперация драгоценных камней или металлов, которые извлекают из отработавших ресурс инструментов, восстанавливают и вновь пускают в производство. В транспортных же машинах, в том числе в автомобилях, часто встречается рекуперация электрической энергии.

Как оно работает

Самый простой пример конструкции, позволяющей возвращать энергию, — умный генератор. При интенсивном разгоне он отключается, чтобы разгрузить двигатель, — следовательно, уменьшается расход топлива и количество вредных выбросов. Потребители электричества в это время вытягивают энергию из аккумулятора. Водитель убирает ногу с педали газа — генератор вновь подключается и пополняет заряд батареи, а автомобиль экономит до 3% горючего.

Направление потоков энергии при рекуперации. При разгоне электричество поступает из батареи в электродвигатель, где преобразуется в механическую энергию для вращения колес.Направление потоков энергии при рекуперации. При разгоне электричество поступает из батареи в электродвигатель, где преобразуется в механическую энергию для вращения колес.

Еще больше пользы приносит рекуперация в гибридных и электрических моделях. Тут электромотор выполняет две функции — движущей силы и генератора. Разгоняя автомобиль, он потребляет электричество, а при замедлении преобразует механическую энергию в электрическую.

Стоит отпустить педаль акселератора, как электроны начинают двигаться в обратную сторону — и батарея заряжается.

При торможении колеса раскручивают электромотор, тот переходит в режим генератора и отдает электроэнергию обратно в батарею.При торможении колеса раскручивают электромотор, тот переходит в режим генератора и отдает электроэнергию обратно в батарею.

Бессменная гидравлика, приводящая в действие колесные механизмы, работает обычно при интенсивном замедлении, а при плавном (до 0,2–0,3g) используется так называемое рекуперативное торможение. Электродвигатель переходит в режим генератора, обмотки статора отдают ток в аккумуляторную батарею, что создает тормозной момент, заставляющий автомобиль останавливаться.

Чем сильнее водитель давит на тормоз, тем выше противодействующий момент — и тем интенсивнее автомобиль замедляется, а электромотор заряжает батареи. Таким образом, рекуперация позволяет не только экономить топливо (примерно 5–10%), но и в полтора-два раза реже менять тормозные колодки.

Повышенная энергоотдача в батарею происходит и в случае, если селектор режимов движения переведен в положение B (Brake). При этом автомобиль лучше тормозит двигателем, поэтому на горной дороге быстрее пополнится запас электричества в аккумуляторах, а тормозные диски и колодки не перегреются.

Использование

Принцип рекуперации пытаются использовать в автомобилях Формулы 1: редкий случай, когда технологию опробовали на серийных машинах, а потом предложили королеве автоспорта.

Правда, конструкции так называемого KERS (Kinetic Energy Recovery System — система возврата кинетической энергии) здесь более изощренные. Большинство команд используют электрическую рекуперацию.

Обкатав KERS на формулах, Ferrari примерила систему рекуперации на дорожный автомобиль.

На базе купе 599 GTB Fiorano появился первый в истории Ferrari гибрид 599 GTB HY-KERS. Шестилитровому бензиновому двигателю на разгоне помогает 74-киловаттный электромотор, вырабатывающий энергию при торможении и позволяющий проехать на электротяге до 5 км.

Рекуперация: и дать, и взятьРекуперация: и дать, и взятьОшибка в тексте? Выделите её мышкой! И нажмите: Ctrl + Enter

Меню раздела

Выработка электроэнергии и ее распределениеГрафики нагрузок электротехнических установокОсновные условия сооружения и эксплуатацииСистема тягового энергоснабжения железных дорогЭлектроснабжение метрополитеновСхемы главных электрических соединенийТранзитная подстанцияОпорная подстанцияРаспределительное устройство тягового напряженияСхемы силовых цепей тяговых подстанций метрополитенаСхема силовых цепей подземной подстанцииПонижающие трансформаторыСиловые трансформаторы для питания не тяговых нагрузокТипы преобразовательных агрегатовСхемы преобразования токаКремниевые выпрямителиПолупроводниковые вентилиАппаратура рекуперацииБыстродействующие выключатели постоянного токаТипы быстродействующих выключателейБыстродействующий выключатель ВАБ-28фБыстродействующие анодные выключателиРазъединители и приводы к нимКороткозамыкателиКоммутационная аппаратура низкого напряженияПакетные выключатели и переключателиВоздушные автоматические выключателиКонтакторыМагнитные пускателиКомплектные распределительные устройстваОткрытые распределительные устройстваЗакрытые распределительные устройстваВспомогательное оборудование тяговых подстанцийИзоляторыИзмерительные трансформаторыРазрядникиАккумуляторные батареиСпециальное оборудование постоянного токаСпециальное оборудование переменного токаОбщая компоновка территории тяговых подстанцийЗдания тяговых подстанцийОткрытая часть подстанцийКонструкции тяговых подстанций метрополитеновЦепи вторичной коммутации и собственных нуждЦепи собственных нужд постоянного и переменного токовУправление основными коммутационными аппаратамиЦепи сигнализации, блокировки и общие подстанционные цепиТипы и принципы выполнения защит оборудования тяговых подстанцийСистема переменного оперативного токаНазначение и классификация узлов автоматикиАвтоматика программного включения и отключенияАвтоматика повторного включения и включения резерваВводы 110 кВМонтаж электрооборудования тяговых подстанцийМонтаж тяговых подстанций и контактной сетиИндустриализация электромонтажных работТехническая документацияПриемка тяговой подстанции под монтажМонтаж электрооборудования ОРУСиловые трансформаторыКоммутационная аппаратураРазрядникиКомпенсирующие устройстваМонтаж электрооборудования ЗРУВыпрямители в зданииСвинцовые аккумуляторные батареиСглаживающие устройстваОбщие положения об испытанияхИспытание некоторых типов электрооборудованияОбщий порядок испытания и наладки РЗАПриемка тяговых подстанций в эксплуатациюОсновные элементы хозяйства электрификацииРевизионно-ремонтные средстваСтруктура подразделений эксплуатации устройств электрификацииОбязанности энергоучасткаУчастки энергоснабженияОбязанности ревизионно-ремонтного персоналаОперативная работаОперативные переключенияБланки переключенийПорядок ликвидации аварийКонтроль за оборудованием подстанцийРаспределительные устройстваСиловые и тяговые масляные трансформаторыБыстродействующие выключателиРаспределительные устройства напряжением до 1000ВЗарядные и подзарядные устройстваДвигатель-генераторыИзмерительные приборы, реле управления и защитыОсвещениеКабельные коммутацииЗаземляющие устройстваОрганизация капитального ремонта электрооборудованияЭкономика переработки энергии на тяговых подстанцияхОсновы техники безопасности и производственной санитарииТехника безопасности при монтаже тяговых подстанцийТехника безопасности при эксплуатации тяговых подстанций

Использование в автомобилестроении

Использование на легковых и грузовых автомобилях

С развитием рынка гибридных и электроавтомобилей система рекуперации зачастую используется для увеличения дальности пробега автомобиля на электрическом заряде.
Наиболее распространенными автомобилями этих классов является Toyota Prius, Chevrolet Volt, Honda Insight, Tesla Model S,3,X,Y

Есть отдельные случаи применения системы рекуперации в автомобиле с привычным бензиновым двигателем для сокращения расхода топлива. Такая система разрабатывалась на а/м Ferrari для обеспечения функционирования внутренних мультимедийных и климатических систем автомобиля от отдельной батареи, заряжаемой рекуперируемой энергией.

Система рекуперации энергии при торможении для электромобилей и электровелосипедов подвергается критике. Тормозной путь автомобиля очень мал по сравнению с проезжаемым путём и составляет от нескольких метров до несколько десятков метров (водитель обычно относительно резко тормозит у самого светофора или места назначения, или вообще подъезжает к месту назначения накатом). За такое короткое время аккумуляторы не успевают сколь-нибудь значительно зарядиться рекуперативным током, даже в городском цикле при частых торможениях. Экономия энергии за счёт рекуперации в лучшем случае составляет доли процента, и поэтому система рекуперативного торможения электромобиля неэффективна и не оправдывает усложнения конструкции. К тому же рекуперативное торможение не освобождает от необходимости обычной колодочной тормозной системы, так как на малых оборотах двигателя в режиме генератора его противо-ЭДС мала и недостаточна для полной остановки автомобиля. Также рекуперативное торможение не решает проблему стояночного тормоза (за исключением искусственного динамического удержания ротора на месте, на что расходуется значительная энергия). В современных электромобилях имеется возможность настройки педали «газа» — при её отпускании электромобиль либо продолжает двигаться по инерции накатом, либо переходит в режим рекуперативного торможения.

Однако рекуперация эффективна для электротранспорта с его частыми участками разгона-торможения, где тормозной путь большой и соизмерим с расстоянием между станциями (метро, пригородные электропоезда).

Использование в автоспорте

В на некоторых болидах использовалась система рекуперации кинетической энергии (KERS). Рассчитывалось, что это подстегнёт разработки в области и дальнейшие совершенствования данной системы.

Впрочем, у Формулы-1 с её мощным двигателем разгон на малых скоростях ограничивается сцеплением шин, а не крутящим моментом. На высоких же скоростях использование KERS не столь эффективно. Так что по результатам сезона-2009 оснащённые данной системой болиды не демонстрировали превосходства над соперниками на большинстве трасс. Однако это может объясняться не столько неэффективностью системы, сколько трудностью её применения в условиях строгих ограничений на вес машины, действовавших в 2009 году в Формуле-1.
После соглашения команд не использовать KERS в 2010 году для сокращения издержек, в сезоне 2011 года использование системы рекуперации было продолжено.

По состоянию на 2012 год на систему KERS налагаются следующие ограничения: передаваемая мощность не более 60 кВт (около 80 л.с.), ёмкость хранилища не более 400 кДж. Это означает, что 80 л.с. можно использовать не более 6.67 с на круг за один или несколько раз. Таким образом, время круга можно уменьшить на 0.1-0.4 с.

Техническим регламентом Формулы-1, утверждённым FIA на 2014 год, предусмотрен переход на более эффективные турбомоторы со встроенной системой рекуперации (ERS). Применение двойной системы рекуперации (кинетической и тепловой) в сезонах 2014—2015 годов стало гораздо более актуально из-за введения жёстких регламентных ограничений на расход топлива — не более 100 кг на всю гонку (в прошлые годы 150 кг) и мгновенный расход не более 100 кг в час. Неоднократно можно было наблюдать, как во время гонки при выходе из строя системы рекуперации машина начинала быстро терять позиции.

Рекуперативное торможение используется также в гонках на выносливость. Такой системой оснащены спортпрототипы класса LMP1 заводских команд и , .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *